CHNJET喷气俱乐部

 找回密码
 立即注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 13199|回复: 19

谈谈鸭翼布局战斗机的气动特点

[复制链接]
发表于 2015-1-23 22:31:00 | 显示全部楼层 |阅读模式
欢迎大家在B站关注CHNJET

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?立即注册

x
原作者:王立杰


摘要
  飞机姿态控制包含俯仰(pitch)、滚转(roll)与偏航(yaw)方向,其中俯仰方向安定性和操控性是对飞行安全最重要的飞控参数。如果以俯仰控制面安装位置对飞机分类,则可分为鸭翼(canard,法文鸭子的意思,来源于法国报纸对莱特兄弟飞机的描述)、水平尾翼(horizontal tail)、无尾翼(tailless)以及同时安装鸭翼和水平尾翼的三翼面(three surface)布局。鸭翼布局虽然具有较佳升力特性,但如果未能妥善处理好鸭翼涡流与主翼、机身及垂直尾翼流场间的交互作用,将对飞行稳定与姿态控制产生不良影响。但这个缺点在近距耦合概念诞生,并结合线传飞控系统后已经得到改善,诞生了几种成功的鸭翼战斗机。本文从气动力学的观点出发,在不考虑飞控系统与推力矢量控制运用的成熟性、结构负荷极限、战场场景想定与战术运用等外在因素的情况下,对鸭翼布局的气动特点进行初探。
6953fdb921bb155bfbe604a6f3a81dfb.jpg
            鸭翼-三角翼布局
df363f75e6fb53b5e53be997768db708.jpg
            水平尾翼布局
437f355356ea00d031370c056fe78909.jpg
            无尾三角翼布局
23689e0b1278317ac8399129b554485f.jpg
            三翼面布局

楼主热帖
回复

使用道具 举报

 楼主| 发表于 2015-1-23 22:32:00 | 显示全部楼层
前言
  人类第一架载人动力飞机“飞行者”号采用的就是鸭翼布局,该布局与水平尾翼布局相比,具较佳的升力特性,所以在飞机早期发展史上也能偶尔见到鸭翼布局战斗机。但因为鸭翼布局复杂的气动特性,特别是缺乏足够的纵向恢复力矩,所以虽然最早运用在飞机上,却没有被后续战斗机普遍运用,水平尾翼布局反而成为“传统布局”。随着线传飞控系统的诞生,因鸭翼与主翼间复杂气流交互作用导致的操控问题得以解决,推力矢量控制进一步解决俯仰方向控制。欧洲和中国的新一代战斗机,因侧重瞬间转弯能力以及短场起降需求,多采鸭翼布局设计,而美俄则继续坚持传统布局战斗机。显见两种布局各具优点,使设计人员于在不同设计考虑下,在两种迥异的气动外形下,依据战场环境与作战需求设计出各自的性能优异的战斗机。
814d5dfec92fe1f7eb344e9bf38c455f.jpg
中国的歼-20是目前唯一的鸭翼布局隐身战斗机

回复 支持 反对

使用道具 举报

 楼主| 发表于 2015-1-23 22:32:17 | 显示全部楼层
  随着中距空空导弹的日益普及,视距外交战(beyond visual range, BVR)已成为未来空战的必然模式,战斗机操控性似乎不如武器性能重要。中程空空导弹发展成熟,性能可靠,战斗机可在视距外交战多目标,如果战斗机具有超音速速度优势还能增加我方导弹射程,导弹发射后还需发挥超音速机动性以规避敌方可能射击的中程空空导弹,尽快脱离敌导弹射程。但在很多情况下还是需要进行目视格斗,如受到敌我识别器(IFF)功能限制必须目视识别、目标成功躲避导弹后、隐身战斗机间的空战、雷达制导导弹遭遇先进电子战装备干扰等。全向(all aspect)攻击近距导弹与头盔瞄准具的结合,使空战特点由“占位”转为“指向”,特别是在近距空空导弹结合红外成像(IR Image)引导头和推力矢量控制后,不可逃逸区大大扩大,先敌射击就能掌握致胜先机,使战斗机瞬时转弯速率的重要性大于持续转弯率。根据赫柏斯特(W. B. Herbst)的研究:战斗机除需具备亚音速格斗性能外,还需具有一定的超音速巡航与转弯能力,所以未来战斗机设计除应该有良好的视距外交战能力外,机动性与敏捷性都是不可忽视的指标。
  机动性是指在一定时间内,战斗机改变飞行速度、飞行高度和方向的能力;敏捷性则是指迅速、精确地改变机动飞行状态的能力,即机动性对时间的微分。依约翰‧博伊德(John Boyd)提出的能量机动论(energy maneuverability),战斗机机动性取决于推重比(推力/重量)与翼载(重量/翼面积),前者受发动机性能与机身重量(含结构、燃油存量与武器挂载)影响,比值大就加速快,后者是飞机可产生多少升力进行转弯,比值小就转弯快,高推重比与低翼载可提高战斗机的机动性,转弯机动性好就能提高战斗机的击杀率与生存性。常见用于评估战斗机转弯能力的参数有:
  最大持续转弯速率(maximum sustained turn rate),用于获得交战初期优势,定义为单位重量剩余功率(specific excess power, SEP)=0与结构限制线的交点。
87d557c8b33239b14bac732521549792.jpg
战斗机在9g结构过载限制下的最大持续转弯速率曲线
  瞬时转弯速率(又称最大可获得转弯速率maximum attain turn rate),用于取得射击位置,定义为最大升力线与结构限制线的交点。
  瞬时转弯半径(又称最小可获得半径minimum attain radius of turn)用于取得先敌射击机会,受最大升力线限制。
  由以上3项参数定义可知,在结构极限范围内,除发动机推力外,气动设计能产生多少升力将是影响战斗机机动性的主要参数。

回复 支持 反对

使用道具 举报

 楼主| 发表于 2015-1-23 22:32:58 | 显示全部楼层
鸭翼的操纵特性
  鸭翼布局最引人注意的优点就是良好的升力特性,因为是以正升力形式进行姿态控制。以上仰动作为例:传统布局是由水平尾翼以负升力方式产生抬头力矩,整体而言,水平尾翼完成抬头动作时将损失总升力,因此会降低战斗机的最大起飞重量,增加起飞距离。鸭翼则以正升力形式使机鼻上仰,所以鸭翼可以增加总升力,增加战斗机的最大起飞重量,缩短起飞距离。
679d901f4fa122a99e39c303ec0621f4.jpg
传统布局由水平尾翼以负升力方式配平
9e1e65229da0fade80c13310f0ad76d6.jpg
鸭翼以正升力形式配平
fa60ed644822234c7934699b60630dd0.jpg
随着迎角的加大,鸭翼布局具有更好的升力系数

回复 支持 反对

使用道具 举报

 楼主| 发表于 2015-1-23 22:33:21 | 显示全部楼层
  鸭翼的另一个优点是,由于战斗机为对发动机推力需求与日俱增,导致发动机重量随之增加,传统布局会造成飞机重心后移,缩短水平尾翼力臂。如果把水平安定面安装在主翼前方成为鸭翼,就会有较长力臂,可提升操控性。
  由于鸭翼在主翼之前,鸭翼偏折会改变气流,影响主翼流场,所以鸭翼的安装位置和动作形式都应慎重考虑。以较早期的鸭翼战斗机——瑞典SAAB-37“雷式”(Viggen)为例,鸭翼是固定式,后缘加装副翼。而以色列的“幼狮”(Kfir)战斗机更是安装了完全固定的鸭翼,此类鸭翼的作用与机翼前缘边条(leading edge extend, LEX)相似,不能被视为气动控制面。固定鸭翼激起的涡流通过主翼上表面,提供气流能量,增加机翼升力,推迟气流分离,提高大迎角飞行性能,改善纵向稳定性。虽然固定鸭翼没有完全发挥鸭翼的优点,但已经使这两种战斗机的性能优于同时期战斗机。与同为三角翼、无水平尾翼设计的F-106和传统布局的F-4比较,SAAB-37具较佳升力系数与降落性能。
171fb962d4796e5e0c6e417d2e751e23.jpg
固定式鸭翼产生涡流的作用与机翼前缘边条相似

回复 支持 反对

使用道具 举报

 楼主| 发表于 2015-1-23 22:33:35 | 显示全部楼层
  鸭翼与哪种外形的主翼匹配最好呢?由于后掠翼的失速是从翼尖发生,鸭翼产生的涡流对延缓该处流场分离的帮助不大,所以后掠翼和梯形翼大多以前缘边条或锯齿产生涡流,推迟气流分离的方式来提高大迎角操控性,所以一般不会采用鸭翼-梯形翼或鸭翼-后掠翼的匹配方式。鸭翼大多会与三角翼和前掠翼匹配,产生的涡流能推迟这两种机翼的大迎角失速。试验表明鸭翼还能降低前掠翼根部的超音速激波强度,减轻翼根气流分离情况,但因为前掠翼仍无法克服材料特性与战损容许能力问题,并未用于真正的战斗机设计上,所以本文仅对鸭翼-三角翼布局进行探讨,在讨论前我们需要先了解一下三角翼的气动特性。
bf32ab344561463b88e8009e93b987e6.jpg
鸭翼配合后掠翼或梯形翼并不能帮助提高大迎角性能,一般是配合三角翼或前掠翼

回复 支持 反对

使用道具 举报

 楼主| 发表于 2015-1-23 22:33:53 | 显示全部楼层
三角翼的气动特性
  在追求战斗机高速性能的时代,无尾三角翼设计曾是各国竞相采用的设计。在结构上三角翼极长的翼弦可以使用简单的结构把力量均匀分布在机身,也使机翼厚度由尖锐的前缘经较长距离过渡至较厚的翼根,兼顾低阻力与高结构强度,并获得充足的机翼油箱空间,并提高战损容忍度。大后掠角的机翼前缘可躲在机鼻形成的马赫锥后,减少超音速阻力,在发动机推力不足却需追求超音速能力的年代深具价值。无水平尾翼的设计可省去驱动水平尾翼的致动器与支撑结构,并减少水平尾翼的表面阻力,使战斗机得以充分发挥高速性能。大翼面积获得低翼载,保证了较佳的瞬时转弯速率。
23c2abbbd3af87639d08ea62bfa801ee.jpg
三角翼大后掠角的机翼前缘可躲在机鼻形成的马赫锥后,减少超音速阻力

回复 支持 反对

使用道具 举报

 楼主| 发表于 2015-1-23 22:34:09 | 显示全部楼层
  但三角翼存在先天缺陷,由于机翼展弦比低,升力系数在相同迎角下低于后掠翼和梯形翼。而且为避免产生低头力矩,无法使用襟副翼等增升装置,需以大迎角、高速落地,不利短场降落。低翼载使飞机对气流扰动敏感,低空高速飞行时易受不稳定气流干扰,影响飞行品质。由于没有尾翼进行俯仰控制,需要主翼后缘升降副翼控制,相同控制面偏角造成的配平阻力大于传统气动布局,影响盘旋机动性,在格斗时能量衰减快,不利于近战。副翼位置靠近垂直尾翼,副翼作动时造成两侧翼面压力不同,容易影响垂直尾翼流场,造成偏航控制问题。所以在20世纪60年代后,战斗机无尾三角翼热潮渐退,直至线传飞控系统出现,克服了上述气动问题后,三角翼适于大迎角飞行的气动特性才开始被人注意。
  具大后掠角且前缘尖锐的三角翼,由于下翼面压力大于上翼面,因此在大迎角时气流会从下翼面向上翼面卷曲,形成涡流。当气流在大迎角时从机翼前缘分离,且重新附着(reattach)于上翼面下游处时,就形成了主涡流(primary vortex),此涡流在上翼面所生成的卷动气流(Swirling flow)形成一个高速低压区,产生向上的吸力(suction force),称为涡升力(vortex lift)。所以大迎角时机翼上表面虽然出现气流分离现象,但机翼升力却反而增加,三角翼的总升力是涡流涡升力与表面附着气流产生的位流升力之和。机翼前缘越尖锐,产生的涡流越强,卷曲速度越快,形成的涡流柱型越细且集中,稳定性越强。如果涡流内有一个轴向流,就更可以增加安定性,所以后掠角越大,产生的涡流也越安定。如果涡流附近有其它涡流存在,彼此间交互影响也可增加其安定性。如果涡流受低压区吸引,也会增加安定性。幻影2000进气道两侧固定式小边条就是为大迎角时产生额外涡流所设置的。
dee21cb6a47b2f2d67bc3b0abee38978.jpg
f6d5cbc7080d3f0c9ad2851bb6ade735.jpg
三角翼在大迎角时会在翼面上方形成巨大涡流
10f817fec50df79d54517d1e976e3cca.jpg
三角翼大迎角时的升力分布,可以看到涡流的增升作用

回复 支持 反对

使用道具 举报

 楼主| 发表于 2015-1-23 22:34:27 | 显示全部楼层
  随着迎角持续增加,主涡流将向内侧移动,涡流核心(vortex core)逐渐扩大,涡流变得不安定而崩溃,低压区随之消失,紊流漩涡(turbulent eddy)出现,此时升力降低,失速现象发生。所以大后掠角三角翼失速的原因并非上翼面气流分离所致,而是涡流不稳定崩溃后,上翼面低压区消失所致。涡流溃散的时机可分为左右对称或单侧发生,如为单侧涡流溃散将影响滚转(rolling)方向的稳定性。上述分析并未考虑前缘襟翼对主翼流场的影响,一般来说,三角翼的前缘襟翼可在大迎角时增加战斗机的稳定性,低迎角时增加升力。
30f90c000710ba22c8773ce083abbc62.jpg
迎角持续增加后,涡流最终变得不安定而崩溃

回复 支持 反对

使用道具 举报

 楼主| 发表于 2015-1-23 22:34:43 | 显示全部楼层
  由上述分析知,涡流核心是影响涡流稳定与否的关键,有着易受外界扰动而提早退化溃散的特性,涡流溃散虽是预料中的事,但过早溃散的涡流将造成升力损失与姿态控制等问题。所以如何延长、稳定涡流核心以维持、强化涡升力,提高战斗机大迎角飞行能力就成为为研究重点。
  在三角翼之前安装大后掠角鸭翼,就能在大迎角时产生强劲的涡流,与主翼的涡流产生交互作用,稳定涡流核心,延缓主翼失速的发生,提升大迎角性能。可变偏角鸭翼一方面可以引导气流以较佳角度进入主翼流场,并且能调整涡流的角度与强度,实现涡流控制的最佳化。固定边条产生的涡流因无法控制涡流强度,只能用其它气动控制面配合变化,在效率上远不及鸭翼。在大迎角时,垂直尾翼因笼罩于机身扰流中,降低了偏航方向控制效率,通过鸭翼差动控制可弥补偏航方向姿态控制效率的损失。三角翼因不易配平增升装置(如襟副翼)等所产生的低头力矩,也因可以鸭翼配平后,得以装用。此外在降落后通过加大鸭翼偏角,使之成为大型减速板,又可在不增加刹车系统负荷情况下,大幅缩短刹车距离。鸭翼有这么多气动控制优点,那为什么直到20世纪80年代后才逐渐被普遍运用在战斗机设计中呢?主要原因就是鸭翼复杂的气动特性。
269094f9f686abdeb6455d043c6bb3c3.jpg
2ce94dbe86ba93156bdb016c9070d5ad.jpg
鸭翼涡流能对主翼涡流产生有利干扰

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

sitemap|联系站长|版权说明|小黑屋|Archiver|手机版|CHNJET喷气俱乐部 ( 京ICP备15028347号-2 京公网安备 11011202000937号 )

GMT+8, 2024-12-22 11:09

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表