重心位置对鸭翼布局飞控的影响
重心位置的选择会影响全机的机动性及稳定性,重心在升力中心之前,可使战斗机姿态自然稳定,但缺乏操控性,反之则可获较佳操控性,但不易稳定,线传飞控的出现使重心得以后置。
对静稳定设计的鸭翼布局战斗机而言,重心位置较靠近机头,鸭翼必须产生较大升力配平,除了影响鸭翼附近结构设计与翼面积外,也会产生较大诱导阻力,增强鸭翼下洗气流强度,降低主翼升力效率。跨音速时,随着气动中心的后移,鸭翼须以更大的升力进行配平,增加了诱导阻力,不利于跨音速性能。把重心后置,鸭翼控制力臂延长,可以减轻鸭翼气动负载,能以较小的配平阻力进行姿态控制,同时获得较佳的超音速性能。当然重心位置也不能过度后移,否则鸭翼将要产生负升力配平。
诱导阻力与翼面负载分布有密切关系,这与稳定性的选择、重心位置设定、所需配平力有关。鸭翼与主翼间的高度差,以及重心与升力中心相对关系位置均会影响配平阻力(trim drag),升力中心与重心距离增加,配平阻力也随之加大。在重心位置不变时,鸭翼与主翼的高度差越小,配平阻力系数越大,所以在气动与结构允许的情况下,应使鸭翼与主翼保持适当高度差。
JAS-39是的典型近距耦鸭翼设计,上图是该机在各种情况下的鸭翼、前缘襟翼、后缘升降副翼的偏转情况 对以先天不稳定设计的飞机而言,传统布局因重心在升力中心之后,尾翼也能以升力形式进行控制,与鸭翼一样能提供敏捷灵活的控制。在空速持续增加至接近音速时,升力中心后移,与重心间距离降低,飞机稳定性渐增,升降舵不能够提供足够的控制力矩,所以需要采用全动式水平尾翼,增加了配平阻力。对鸭翼而言,却因升力中心的后移而增加控制力矩,强化了鸭翼的姿态控制能力,能以较小偏角获得足够操控性,降低配平阻力,在超音速时也具有较佳操控性。
进一步扩展战斗机飞行包线至失速后(post-stall)控制范围,那么飞机就要在先天不稳定和失速后控制低头恢复(nose-down recovery)能力间取得平衡,大迎角时只有产生足够的低头恢复力矩,才能克服俯仰惯性耦合动量、进气道气流动量以及重心位置的变化。所以X-31验证机在设计时把将最小俯仰力矩系数(pitching moment coefficient, CM)设定为-0.1,以获足够的低头力矩,重心位置则取8%。这是因为先天不稳定的纯三角翼布局虽然具有较佳的常规飞行性能,却没有失速后控制能力,而先天稳定的三角翼布局虽然在大迎角时有低头恢复力矩,常规飞行性能却较差。鸭翼可在常规飞行时使升力中心前移,把全机变成先天不稳定,进而获得较佳的配平阻力与升力,在大迎角时鸭翼则不承受控制负载,让先天稳定的三角翼提供低头恢复力矩,这种设计概念不仅可用较小的鸭翼获得足够配平能力,并且可以减轻系统重量与阻力。
|