马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
《Advances in Control System Technology for Aerospace Applications》
航空航天控制系统技术进展
编者:
Eric Feron
School of Aerospace Engineering
Georgia Institute of Technology
出版社:Springer
出版时间:2016年
《Advances in Control System Technology for Aerospace Applications》
《Advances in Control System Technology for Aerospace Applications》
《Advances in Control System Technology for Aerospace Applications》
《Advances in Control System Technology for Aerospace Applications》
目录
1 Spacecraft Autonomy Challenges for Next-Generation
Space Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Joseph A. Starek, Behçet Açıkmeşe, Issa A. Nesnas
and Marco Pavone
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 High-Level Challenges and High-Priority
Technologies for Space Autonomous Systems . . . . . . 3
1.2 Relative Guidance Algorithmic Challenges for Autonomous
Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Challenges and Future Directions . . . . . . . . . . . . . . . 11
1.3 Extreme Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.4 Challenges and Future Directions . . . . . . . . . . . . . . . 24
1.4 Microgravity Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.2 Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.3 State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.4 Challenges and Future Directions . . . . . . . . . . . . . . . 35
1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2 New Guidance, Navigation, and Control Technologies
for Formation Flying Spacecraft and Planetary Landing . . . . . . . 49
Fred Y. Hadaegh, Andrew E. Johnson, David S. Bayard,
Behçet Açıkmeşe, Soon-Jo Chung and Raman K. Mehra
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
vii
2.2 GN&C Technologies for Planetary Landing in Hazardous
Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.2 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.3 Case Study 1: Mars Robotic System . . . . . . . . . . . . . 53
2.2.4 Case Study 2: Crewed Lunar System. . . . . . . . . . . . . 55
2.2.5 System Comparison . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3 Phase Synchronization Control of Spacecraft Swarms . . . . . . . 58
2.3.1 Problem Statement—Controlling the Phase
Differences in Periodic Orbits. . . . . . . . . . . . . . . . . . 59
2.3.2 Phase Synchronization Control Law with Adaptive
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.3 Main Stability Theorems and Simulation Results . . . . 62
2.4 Application of Probabilistic Guidance to Swarms
of Spacecraft Operating in Earth Orbit. . . . . . . . . . . . . . . . . . 64
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.2 Probabilistic Guidance Problem . . . . . . . . . . . . . . . . 65
2.4.3 Probabilistic Guidance Algorithm (PGA) . . . . . . . . . . 66
2.4.4 Adaptation of PGA to Earth Orbiting Swarms . . . . . . 68
2.5 Nonlinear State Estimation And Sensor Optimization
Problems for Detection of Space Collision Events. . . . . . . . . . 70
2.5.1 LEO Sensor Constellation Design and Collision
Event Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.5.2 Satellite Collision Modeling and Estimation . . . . . . . . 73
2.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3 Aircraft Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Piero Miotto, Leena Singh, James D. Paduano, Andrew Clare,
Mary L. Cummings and Lesley A. Weitz
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.1.1 Challenges to the Safe Integration of UAVs
in the National Airspace . . . . . . . . . . . . . . . . . . . . . 83
3.1.2 Technical Enhancements for Safe Insertion
of UAVs in the NAS . . . . . . . . . . . . . . . . . . . . . . . 84
3.2 On-Board Air Autonomy Systems Needs . . . . . . . . . . . . . . . . 86
3.2.1 Challenges to Integration of UAVs in the NAS . . . . . 86
3.2.2 Technical Enhancements for Improved In-Air
autonomy—Key Technologies . . . . . . . . . . . . . . . . . 87
3.2.3 Conclusions: A Road-Map to Address
the Technical Challenges . . . . . . . . . . . . . . . . . . . . . 89
3.3 Human-Automation Collaboration . . . . . . . . . . . . . . . . . . . . . 92
3.3.1 Challenges in the Collaborative Human-Automation
Scheduling Process . . . . . . . . . . . . . . . . . . . . . . . . . 92
viii Contents
3.3.2 Candidate Methods in Human-Automation
Collaborative Scheduling . . . . . . . . . . . . . . . . . . . . . 94
3.3.3 Technical Enhancements needed for Humans
Interactions with Scheduling Algorithms . . . . . . . . . . 95
3.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4 Autonomy Evolution for Air Traffic Control . . . . . . . . . . . . . 98
3.4.1 Challenges and Limitations of Current Air Traffic
Management System . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4.2 Enhancements Made Within ATC System . . . . . . . . . 99
3.4.3 Technical Enhancements needed in the Evolution
of Airborne and Ground-Based Technologies . . . . . . . 101
3.4.4 Conclusions and Proposed Road-Map . . . . . . . . . . . . 103
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4 Challenges in Aerospace Decision and Control:
Air Transportation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Hamsa Balakrishnan, John-Paul Clarke, Eric M. Feron,
R. John Hansman and Hernando Jimenez
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Key NextGen Topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3 Supporting Technology Research Challenges . . . . . . . . . . . . . 111
4.3.1 Design of Automation with Graceful
Degradation Modes . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.2 System Verification and Validation (V&V) . . . . . . . . 112
4.3.3 Large-Scale, Real-Time Optimization Algorithms . . . . 113
4.3.4 Multi-Objective, Multi-Stakeholder, Optimization
Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4 Domain-Specific Research Challenges . . . . . . . . . . . . . . . . . . 114
4.4.1 Airport Arrival Management . . . . . . . . . . . . . . . . . . 114
4.4.2 Airport Departure Processes . . . . . . . . . . . . . . . . . . . 116
4.4.3 The Trip is Not Over: Passenger Management
in the Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4.4 Domain-Specific Contributions: Abstract Modeling
Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5 From Design to Implementation: An Automated,
Credible Autocoding Chain for Control Systems . . . . . . . . . . . . . 137
Timothy Wang, Romain Jobredeaux, Heber Herencia,
Pierre-Loïc Garoche, Arnaud Dieumegard, Éric Feron
and Marc Pantel
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2 Credible Autocoding Framework . . . . . . . . . . . . . . . . . . . . . 139
5.2.1 Input and Output Languages of the Framework . . . . . 141
Contents ix
5.3 Control Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.1 Control System Stability and Boundedness. . . . . . . . . 143
5.3.2 Prototype Tool-Chain . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.3 Control Semantics in Simulink and Gene-Auto . . . . . . 144
5.3.4 Annotation Blocks and Behaviors in the Model . . . . . 146
5.3.5 Closed-Loop Stability with Bounded Input. . . . . . . . . 147
5.3.6 Expressing the Observer-Based Fault-Detection
Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.3.7 Control Semantics at the Level of the C Code . . . . . . 149
5.3.8 Closed Loop Semantics . . . . . . . . . . . . . . . . . . . . . . 150
5.3.9 Control Semantics in PVS . . . . . . . . . . . . . . . . . . . . 151
5.4 Autocoding with Control Semantics . . . . . . . . . . . . . . . . . . . 153
5.5 Building the Input Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.6 Basics of Program Verification . . . . . . . . . . . . . . . . . . . . . . . 154
5.6.1 Hoare Logic and Deductive Verification . . . . . . . . . . 156
5.6.2 Predicate Transformers . . . . . . . . . . . . . . . . . . . . . . 157
5.6.3 Strongest Post-condition . . . . . . . . . . . . . . . . . . . . . 159
5.7 Translation Process for a Simple Dynamical System . . . . . . . . 159
5.8 Gene-Auto+: A Prototype Credible Autocoder . . . . . . . . . . . . 161
5.8.1 Gene-Auto: Translation . . . . . . . . . . . . . . . . . . . . . . 161
5.8.2 Translation of Annotative Blocks . . . . . . . . . . . . . . . 162
5.9 Translation and Insertion of the System Block. . . . . . . . . . . . . 164
5.10 Translation of the Quadratic Blocks . . . . . . . . . . . . . . . . . . . 165
5.10.1 Types of Quadratic Blocks. . . . . . . . . . . . . . . . . . . . 165
5.10.2 Insertion of Ellipsoid Objects . . . . . . . . . . . . . . . . . . 165
5.11 Computing the Strongest Post-condition. . . . . . . . . . . . . . . . . 167
5.11.1 Affine Transformation . . . . . . . . . . . . . . . . . . . . . . . 168
5.11.2 S-Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.11.3 Verification of the Strongest Post-condition . . . . . . . . 172
5.12 Automatic Verification of Control Semantics . . . . . . . . . . . . . 172
5.12.1 From C Code to PVS Theorems . . . . . . . . . . . . . . . . 173
5.12.2 Theory Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 175
5.12.3 Generically Discharging the Proofs in PVS . . . . . . . . 176
5.12.4 The pvs-ellipsoid Plugin to Frama-C . . . . . . . . 177
5.12.5 Checking Inclusion of the Propagated Ellipsoid . . . . . 177
5.13 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.14 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
专业书籍
下载地址:(回复后可见)
|