《System Health Management: with Aerospace Applications》
系统健康管理:航空航天应用
编者:
Stephen B. Johnson
NASA Marshall Space Flight Center
and University of Colorado at Colorado Springs, USA
Thomas J. Gormley
Gormley & Associates, USA
Seth S. Kessler
Metis Design Corporation, USA
Charles D. Mott
Complete Data Management, USA
Ann Patterson-Hine
NASA Ames Research Center, USA
Karl M. Reichard
Pennsylvania State University, USA
Philip A. Scandura, Jr.
Honeywell International, USA
出版社:Wiley
出版时间:2011年
《System Health Management: with Aerospace Applications》
《System Health Management: with Aerospace Applications》
《System Health Management: with Aerospace Applications》
《System Health Management: with Aerospace Applications》
目录
Part One THE SOCIO-TECHNICAL CONTEXT OF SYSTEM HEALTH
MANAGEMENT
Charles D. Mott
1 The Theory of System Health Management 3
Stephen B. Johnson
Overview 3
1.1 Introduction 3
1.2 Functions, Off-Nominal States, and Causation 7
1.3 Complexity and Knowledge Limitations 10
1.4 SHM Mitigation Strategies 11
1.5 Operational Fault Management Functions 12
1.5.1 Detection Functions and Model Adjustment 14
1.5.2 Fault Diagnosis 16
1.5.3 Failure Prognosis 17
1.5.4 Failure Response Determination 17
1.5.5 Failure Response 17
1.5.6 Fault and Failure Containment 19
1.6 Mechanisms 19
1.6.1 Fault Tolerance 19
1.6.2 Redundancy 20
1.7 Summary of Principles 22
1.8 SHM Implementation 23
1.9 Some Implications 24
1.9.1 Detecting Unpredicted Off-nominal States 24
1.9.2 Impossibility of Complete Knowledge Independence 24
1.9.3 The Need for, and Danger of, Bureaucracy 25
1.9.4 “Clean” Interfaces 25
1.9.5 Requirements, Models, and Islands of Rigor 26
1.10 Conclusion 26
Bibliography 26
viii Contents
2 Multimodal Communication 29
Beverly A. Sauer
Overview 29
2.1 Multimodal Communication in SHM 31
2.2 Communication Channels 34
2.3 Learning from Disaster 36
2.4 Current Communication in the Aerospace Industry 37
2.5 The Problem of Sense-making in SHM Communication 37
2.6 The Costs of Faulty Communication 38
2.7 Implications 39
2.8 Conclusion 41
Acknowledgments 43
Bibliography 43
3 Highly Reliable Organizations 49
Andrew Wiedlea
Overview 49
3.1 The Study of HROs and Design for Dependability 49
3.2 Lessons from the Field: HRO Patterns of Behavior 52
3.2.1 Inseparability of Systemic Equipment and Anthropologic Hazards 53
3.2.2 Dynamic Management of System Risks 54
3.2.3 Social Perceptions of Benefits and Hazards 56
3.3 Dependable Design, Organizational Behavior, and Connections to the HRO Project 57
3.4 Conclusion 60
Bibliography 61
4 Knowledge Management 65
Edward W. Rogers
Overview 65
4.1 Systems as Embedded Knowledge 66
4.2 KM and Information Technology 66
4.3 Reliability and Sustainability of Organizational Systems 67
4.4 Case Study of Building a Learning Organization: Goddard Space Flight Center 69
4.4.1 Practice 1: Pause and Learn (PaL) 69
4.4.2 Practice 2: Knowledge Sharing Workshops 71
4.4.3 Practice 3: Case Studies 72
4.4.4 Practice 4: Review Processes and Common Lessons Learned 73
4.4.5 Practice 5: Goddard Design Rules 73
4.4.6 Practice 6: Case-Based Management Training 74
4.5 Conclusion 75
Bibliography 75
5 The Business Case for SHM 77
Kirby Keller and James Poblete
Overview 77
5.1 Business Case Processes and Tools 78
5.2 Metrics to Support the Decision Process 80
5.2.1 Availability 81
5.2.2 Schedule Reliability 81
5.2.3 Maintenance Resource Utilization 81
Contents ix
5.2.4 ROI 81
5.2.5 NPV 82
5.2.6 Cash Flow 82
5.3 Factors to Consider in Developing an Enterprise Model 82
5.3.1 Operational Model 83
5.3.2 Financial Analysis 85
5.4 Evaluation of Alternatives 86
5.5 Modifications in Selected Baseline Model 86
5.5.1 Additions and Changes in Technology on Fleet Platforms 86
5.5.2 Additions and Changes in Technology in Support Operations 87
5.5.3 Changes in Policies and Procedures 87
5.6 Modeling Risk and Uncertainty 87
5.7 Model Verification and Validation 88
5.8 Evaluation Results 88
5.9 Conclusion 90
Bibliography 91
Part Two SHM AND THE SYSTEM LIFECYCLE
Seth S. Kessler
6 Health Management Systems Engineering and Integration 95
Timothy J. Wilmering and Charles D. Mott
Overview 95
6.1 Introduction 95
6.2 Systems Thinking 96
6.3 Knowledge Management 97
6.4 Systems Engineering 98
6.5 Systems Engineering Lifecycle Stages 99
6.6 Systems Engineering, Dependability, and Health Management 100
6.7 SHM Lifecycle Stages 103
6.7.1 Research Stage 103
6.7.2 Requirements Development Stage 104
6.7.3 System/Functional Analysis 105
6.7.4 Design Synthesis and Integration 106
6.7.5 System Test and Evaluation 107
6.7.6 HM System Maturation 109
6.8 SHM Analysis Models and Tools 110
6.8.1 Safety Models 110
6.8.2 Reliability Models 111
6.8.3 Diagnostic Models 112
6.9 Conclusion 112
Acknowledgments 112
Bibliography 112
7 Architecture 115
Ryan W. Deal and Seth S. Kessler
Overview 115
7.1 Introduction 115
x Contents
7.2 SHM System Architecture Components 117
7.2.1 Power Consumption 117
7.2.2 Data Communications 118
7.3 Examples of Power and Data Considerations 119
7.4 SHM System Architecture Characteristics 120
7.4.1 Processing 120
7.4.2 Operational Duration 121
7.4.3 Fault Tolerance and Failure Management 121
7.4.4 Reliability 122
7.4.5 Asset Availability 123
7.4.6 Compatibility 123
7.4.7 Maintainability 124
7.4.8 Extensibility 125
7.4.9 Centralized versus Distributed SHM 125
7.5 SHM System Architecture Advanced Concepts 126
7.5.1 Systems-of-Systems 126
7.5.2 Network-centric Operations 126
7.6 Conclusion 126
Bibliography 127
8 System Design and Analysis Methods 129
Irem Y. Tumer
Overview 129
8.1 Introduction 129
8.2 Lifecycle Considerations 130
8.3 Design Methods and Practices for Effective SHM 132
8.3.1 Reliability Analysis Methods 132
8.3.2 Formal Design Methods 133
8.3.3 Function-Based Design Methods 134
8.3.4 Function-Based Failure and Risk Analysis Methods 135
8.3.5 Design for Testability Methods 137
8.3.6 System Analysis and Optimization Methods 137
8.4 Conclusion 141
Acknowledgments 142
Bibliography 142
9 Assessing and Maturing Technology Readiness Levels 145
Ryan M. Mackey
Overview 145
9.1 Introduction 145
9.2 Motivating Maturity Assessment 146
9.3 Review of Technology Readiness Levels 147
9.4 Special Needs of SHM 149
9.5 Mitigation Approaches 151
9.6 TRLs for SHM 153
9.7 A Sample Maturation Effort 154
9.8 Conclusion 156
Bibliography 157
Contents xi
10 Verification and Validation 159
Lawrence Z. Markosian, Martin S. Feather and David E. Brinza
Overview 159
10.1 Introduction 159
10.2 Existing Software V&V 160
10.2.1 Avionics V&V 160
10.2.2 NASA Requirements, Policies, Standards, and Procedures Relevant
to Software 162
10.2.3 V&V for Spacecraft Fault Protection 163
10.2.4 Example of Industry V&V Current Practice: Space Shuttle Main Engine
Controller 164
10.3 Feasibility and Sufficiency of Existing Software V&V Practices for SHM 165
10.3.1 Feasibility 165
10.3.2 Sufficiency 166
10.4 Opportunities for Emerging V&V Techniques Suited to SHM 167
10.4.1 SHM Architecture 168
10.4.2 Models Used in SHM 168
10.4.3 Planning Systems in SHM 169
10.4.4 SHM of Software Systems 169
10.5 V&V Considerations for SHM Sensors and Avionics 170
10.5.1 Flight Hardware V&V 170
10.5.2 Sensor Data V&V 170
10.6 V&V Planning for a Specific SHM Application 171
10.6.1 Application Description 173
10.6.2 Data-Driven Anomaly Detection Using IMS 173
10.6.3 Model-Based Fault Diagnosis Using TEAMS 177
10.6.4 Rule-Driven Failure Recovery Using SHINE 178
10.7 A Systems Engineering Perspective on V&V of SHM 180
10.8 Conclusion 181
Acknowledgments 181
Bibliography 181
11 Certifying Vehicle Health Monitoring Systems 185
Seth S. Kessler, Thomas Brotherton and Grant A. Gordon
Overview 185
11.1 Introduction 185
11.2 Durability for VHM Systems 186
11.3 Mechanical Design for Structural Health Monitoring Systems 189
11.4 Reliability and Longevity of VHM Systems 190
11.5 Software and Hardware Certification 190
11.6 Airworthiness Certification 191
11.7 Health and Usage Monitoring System Certification Example 191
11.8 Conclusion 194
Acknowledgments 194
Bibliography 194
Part Three ANALYTICAL METHODS
Ann Patterson-Hine
xii Contents
12 Physics of Failure 199
Kumar V. Jata and Triplicane A. Parthasarathy
Overview 199
12.1 Introduction 200
12.2 Physics of Failure of Metals 201
12.2.1 High-Level Classification 201
12.2.2 Second-Level Classification 203
12.3 Physics of Failure of CMCs 212
12.3.1 Fracture 214
12.3.2 Material Loss 215
12.4 Conclusion 216
Bibliography 216
13 Failure Assessment 219
Robyn Lutz and Allen Nikora
Overview 219
13.1 Introduction 219
13.2 FMEA 220
13.3 SFMEA 221
13.4 FTA 222
13.5 SFTA 222
13.6 BDSA 223
13.7 Safety Analysis 225
13.8 Software Reliability Engineering 225
13.9 Tools and Automation 228
13.10 Future Directions 229
13.11 Conclusion 229
Acknowledgments 230
Bibliography 230
14 Reliability 233
William Q. Meeker and Luis A. Escobar
Overview 233
14.1 Time-to-Failure Model Concepts and Two Useful Distributions 233
14.1.1 Other Quantities of Interest in Reliability Analysis 234
14.1.2 Important Probability Distributions 234
14.2 Introduction to System Reliability 236
14.2.1 System Reliability Concepts 236
14.2.2 Metrics for System Reliability 236
14.2.3 Time Dependency of System Reliability 237
14.2.4 Systems with Simple Structures 237
14.2.5 Importance of Part Count in Product Design 238
14.3 Analysis of Censored Life Data 239
14.3.1 Analysis of Multiply Right-Censored Data 239
14.3.2 Probability Plotting 239
14.3.3 Maximum Likelihood Estimation 241
14.3.4 Extensions to Data with Other Types of Censoring and Truncation 243
Contents xiii
14.4 Accelerated Life Testing 243
14.5 Analysis of Degradation Data 244
14.5.1 A Simple Method of Degradation Data Analysis 245
14.5.2 Comments on the Approximate Degradation Analysis 245
14.6 Analysis of Recurrence Data 246
14.6.1 Mean Cumulative Function and Recurrence Rate 247
14.6.2 Non-parametric Estimation of the MCF 248
14.7 Software for Statistical Analysis of Reliability Data 249
Acknowledgments 250
Bibliography 250
15 Probabilistic Risk Assessment 253
William E. Vesely
Overview 253
15.1 Introduction 253
15.2 The Space Shuttle PRA 254
15.3 Assessing Cumulative Risks to Assist Project Risk Management 254
15.4 Quantification of Software Reliability 257
15.5 Description of the Techniques Used in the Space Shuttle PRA 260
15.5.1 The IE-MLD 261
15.5.2 The Mission Event Tree 261
15.5.3 Fault Trees 261
15.5.4 Linking the Fault Trees to the Event Trees 263
15.6 Conclusion 263
Bibliography 263
16 Diagnosis 265
Ann Patterson-Hine, Gordon B. Aaseng, Gautam Biswas, Sriram Narashimhan
and Krishna Pattipati
Overview 265
16.1 Introduction 266
16.2 General Diagnosis Problem 267
16.3 Failure Effect Propagation and Impact 267
16.4 Testability Analysis 268
16.5 Diagnosis Techniques 268
16.5.1 Rule-Based Expert Systems 268
16.5.2 Case-Based Reasoning Systems 269
16.5.3 Learning System 270
16.5.4 Model-Based Reasoning 273
16.6 Automation Considerations for Diagnostic Systems 276
16.7 Conclusion 277
Acknowledgments 277
Bibliography 277
17 Prognostics 281
Michael J. Roemer, Carl S. Byington, Gregory J. Kacprzynski, George
Vachtsevanos and Kai Goebel
Overview 281
17.1 Background 282
xiv Contents
17.2 Prognostic Algorithm Approaches 282
17.2.1 Statistical Reliability and Usage-Based Approaches 283
17.2.2 Trend-Based Evolutionary Approaches 284
17.2.3 Data-Driven Approaches 284
17.2.4 Particle Filtering 285
17.2.5 Physics-Based Modeling Approaches 286
17.3 Prognosis RUL Probability Density Function 287
17.4 Adaptive Prognosis 287
17.5 Performance Metrics 289
17.5.1 Accuracy 289
17.5.2 Precision 290
17.5.3 Convergence 291
17.6 Distributed Prognosis System Architecture 292
17.7 Conclusion 292
Bibliography 293
Part Four OPERATIONS
Karl M. Reichard
18 Quality Assurance 299
Brian K. Hughitt
Overview 299
18.1 NASA QA Policy Requirements 300
18.2 Quality System Criteria 302
18.3 Quality Clauses 303
18.4 Workmanship Standards 304
18.5 Government Contract Quality Assurance 304
18.6 Government Mandatory Inspection Points 305
18.7 Quality System Audit 306
18.8 Conclusion 307
Bibliography 308
19 Maintainability: Theory and Practice 309
Gary O’Neill
Overview 309
19.1 Definitions of Reliability and Maintainability 310
19.2 Reliability and Maintainability Engineering 311
19.3 The Practice of Maintainability 314
19.4 Improving R&M Measures 315
19.5 Conclusion 316
Bibliography 317
20 Human Factors 319
Robert S. McCann and Lilly Spirkovska
Overview 319
20.1 Background 320
20.2 Fault Management on Next-Generation Spacecraft 323
20.3 Integrated Fault Management Automation Today 325
Contents xv
20.4 Human–Automation Teaming for Real-Time FM 328
20.4.1 Human–Machine Functional Allocation 328
20.4.2 Ensuring Crew Visibility in Automated Activities 328
20.4.3 Providing Crew Insight on System Summary Displays 329
20.5 Operations Concepts for Crew–Automation Teaming 330
20.6 Empirical Testing and Evaluation 333
20.7 Future Steps 334
20.8 Conclusion 336
Bibliography 336
21 Launch Operations 339
Robert D. Waterman, Patricia E. Nicoli, Alan J. Zide, Susan J. Waterman,
Jose M. Perotti, Robert A. Ferrell and Barbara L. Brown
Overview 339
21.1 Introduction to Launch Site Operations 339
21.2 Human-Centered Health Management 340
21.2.1 Space Shuttle Turnaround Operations 340
21.2.2 International Space Station (ISS) Element Integrated Testing 342
21.2.3 Launch Pad Operations 344
21.2.4 Launch Countdown 344
21.2.5 Expendable Launch Vehicle Processing 345
21.3 SHM 346
21.3.1 Sensing 346
21.3.2 Integrated Data Environment 346
21.3.3 Configuration Data Automation 347
21.4 LS Abort and Emergency Egress 347
21.5 Future Trends Post Space Shuttle 348
21.6 Conclusion 349
Bibliography 349
22 Fault Management Techniques in Human Spaceflight Operations 351
Brian O’Hagan and Alan Crocker
Overview 351
22.1 The Flight Operations Team 352
22.2 System Architecture Implications 353
22.3 Operations Products, Processes and Techniques 358
22.4 Lessons Learned from Space Shuttle and ISS Experience 364
22.5 Conclusion 366
Bibliography 367
23 Military Logistics 369
Eddie C. Crow and Karl M. Reichard
Overview 369
23.1 Focused Logistics 371
23.2 USMC AL 373
23.3 Benefits and Impact of SHM on Military Operations and Logistics 378
23.4 Demonstrating the Value of SHM in Military Operations and Logistics 381
23.5 Conclusion 385
Bibliography 386
xvi Contents
Part Five SUBSYSTEM HEALTH MANAGEMENT
Philip A. Scandura, Jr.
24 Aircraft Propulsion Health Management 389
Al Volponi and Bruce Wood
Overview 389
24.1 Introduction 389
24.2 Basic Principles 390
24.2.1 Module Performance Analysis 390
24.2.2 Engine Health Tracking 391
24.3 Engine-Hosted Health Management 393
24.3.1 Sensors 393
24.3.2 Engine Gas Path 394
24.4 Operating Conditions 394
24.4.1 Actuation 394
24.4.2 Mechanical Components 394
24.4.3 Vibration 394
24.4.4 Lubrication System 395
24.4.5 Turbo-machinery 395
24.4.6 Direct Blade Measures 395
24.4.7 Future 395
24.5 Computing Host 395
24.6 Software 396
24.6.1 FADEC Codes 396
24.6.2 Anomaly Detection 396
24.6.3 Information Fusion 397
24.6.4 Fault Isolation 397
24.7 On-Board Models 398
24.8 Component Life Usage Estimation 398
24.8.1 Traditional Component Lifing Methods 398
24.8.2 Advanced Component Life Usage Tracking 398
24.9 Design of an Engine Health Management System 399
24.9.1 Safety 399
24.9.2 Lifecycle Cost 399
24.10 Supporting a Layered Approach 401
24.11 Conclusion 401
Bibliography 402
25 Intelligent Sensors for Health Management 405
Gary W. Hunter, Lawrence G. Oberle, George Y. Baaklini, Jose M. Perotti
and Todd Hong
Overview 405
25.1 Introduction 406
25.2 Sensor Technology Approaches 407
25.2.1 Ease of Application 408
25.2.2 Reliability 408
25.2.3 Redundancy and Cross-correlation 408
25.2.4 Orthogonality 408
Contents xvii
25.3 Sensor System Development 409
25.3.1 Smart Sensors 409
25.3.2 “Lick and Stick” Leak Sensor Technology 411
25.4 Supporting Technologies: High-Temperature Applications Example 412
25.5 Test Instrumentation and Non-destructive Evaluation (NDE) 413
25.6 Transition of Sensor Systems to Flight 414
25.6.1 Performance Considerations 414
25.6.2 Physical Considerations 414
25.6.3 Environmental Considerations 414
25.6.4 Safety and Reliability Considerations 415
25.7 Supporting a Layered Approach 415
25.8 Conclusion 416
Acknowledgments 417
Bibliography 417
26 Structural Health Monitoring 419
Fu-Kuo Chang, Johannes F.C. Markmiller, Jinkyu Yang and Yujun Kim
Overview 419
26.1 Introduction 419
26.2 Proposed Framework 421
26.2.1 Impact Monitoring 421
26.2.2 Detection of Bolt Loosening in the TPS 422
26.2.3 Design of Built-In Structural Health Monitoring System 425
26.3 Supporting a Layered Approach 427
26.4 Conclusion 427
Acknowledgments 427
Bibliography 427
27 Electrical Power Health Management 429
Robert M. Button and Amy Chicatelli
Overview 429
27.1 Introduction 429
27.2 Summary of Major EPS Components and their Failure Modes 431
27.2.1 Solar Arrays 431
27.2.2 Fuel Cells 431
27.2.3 Batteries 433
27.2.4 Flywheel Energy Storage 434
27.2.5 PMAD 436
27.3 Review of Current Power System HM 437
27.3.1 Hubble Space Telescope (HST) 438
27.3.2 International Space Station (ISS) 439
27.3.3 Space Shuttle 440
27.3.4 Aeronautics 440
27.4 Future Power SHM 440
27.4.1 Design Considerations 441
27.5 Supporting a Layered Approach 441
27.6 Conclusion 442
Bibliography 442
xviii Contents
28 Avionics Health Management 445
Michael D. Watson, Kosta Varnavas, Clint Patrick, Ron Hodge, Carl S. Byington,
Savio Chau and Edmund C. Baroth
Overview 445
28.1 Avionics Description 445
28.1.1 Avionics Components 446
28.1.2 Avionics Architectures 447
28.1.3 Avionics Technology 448
28.2 Electrical, Electronic and Electromechanical (EEE) Parts Qualification 448
28.2.1 Commercial Grade 449
28.2.2 Industrial Grade 449
28.2.3 Military Grade 449
28.2.4 Space Grade 450
28.3 Environments 450
28.3.1 Environmental Parameters 450
28.4 Failure Sources 453
28.4.1 Design Faults 453
28.4.2 Material Defects 453
28.4.3 Fabrication Faults 453
28.5 Current Avionics Health Management Techniques 453
28.5.1 Scan Design/Built-In Self-test (BIST) 454
28.5.2 Error Detection and Correction (EDAC) 455
28.5.3 Boundary Scan 455
28.5.4 Voting 457
28.5.5 Idle Data Pattern Diagnosis 457
28.5.6 Input Protection 457
28.5.7 Module Test and Maintenance (MTM) Bus 458
28.5.8 Intelligent Sensors and Actuators 459
28.5.9 Avionics Systems 460
28.6 Avionics Health Management Requirements 460
28.6.1 Prognostic Health Management and Recovery 461
28.6.2 Anomaly and Failure Detection 461
28.6.3 Recovery 462
28.7 Supporting a Layered Approach 464
28.8 Conclusion 464
Bibliography 464
29 Failure-Tolerant Architectures for Health Management 467
Daniel P. Siewiorek and Priya Narasimhan
Overview 467
29.1 Introduction 467
29.2 System Failure Response Stages 468
29.3 System-Level Approaches to Reliability 469
29.4 Failure-Tolerant Software Architectures for Space Missions 470
29.4.1 Generic Spacecraft 471
29.4.2 Defense Meteorological Satellite Program (DMSP) 471
29.4.3 Mars Pathfinder 473
29.5 Failure-Tolerant Software Architectures for Commercial Aviation Systems 475
29.5.1 Generic Aviation System 475
Contents xix
29.5.2 Airbus A330/A340/A380 476
29.5.3 Boeing 777 476
29.6 Observations and Trends 477
29.6.1 Commercial Off-the-Shelf Components 477
29.6.2 “By-Wire” Software Control and Autonomy 477
29.6.3 Escalating Fault Sources and Evolving Redundancy 478
29.6.4 Domain-Specific Observations 480
29.7 Supporting a Layered Approach 480
29.8 Conclusion 480
Acknowledgments 481
Bibliography 481
30 Flight Control Health Management 483
Douglas J. Zimpfer
Overview 483
30.1 A FC Perspective on System Health Management 483
30.1.1 Commercial Passenger Aircraft 484
30.1.2 Unmanned Aerial Vehicle 484
30.1.3 Spacecraft 484
30.1.4 Reusable Space Exploration Vehicle 484
30.2 Elements of the FC System 485
30.3 FC Sensor and Actuator HM 485
30.3.1 Sensor HM 487
30.3.2 Actuator HM 489
30.4 FC/Flight Dynamics HM 490
30.4.1 Navigation HM 492
30.4.2 Guidance HM 492
30.4.3 Control HM 493
30.5 FC HM Benefits 493
30.6 Supporting a Layered Approach 493
30.7 Conclusion 493
Bibliography 494
31 Life Support Health Management 497
David Kortenkamp, Gautam Biswas and Eric-Jan Manders
Overview 497
31.1 Introduction 497
31.1.1 Life Support Systems 499
31.2 Modeling 501
31.2.1 Physics-Based Modeling 501
31.2.2 Resource-Based Modeling 503
31.3 System Architecture 504
31.3.1 Behavior Monitors and Diagnoser 504
31.3.2 Failure-Adaptive Controller 506
31.3.3 Supervisory Controller 507
31.3.4 Resource Monitors 509
31.3.5 Planner and Scheduler 509
31.4 Future NASA Life Support Applications 509
31.4.1 Crew Exploration Vehicle 509
xx Contents
31.4.2 Lunar Habitats 509
31.4.3 Martian Habitats 510
31.5 Supporting a Layered Approach 510
31.6 Conclusion 510
Bibliography 510
32 Software 513
Philip A. Scandura, Jr.
Overview 513
32.1 Sampling of Accidents Attributed to Software Failures 513
32.2 Current Practice 514
32.2.1 Multi-Version Software 515
32.2.2 Recovery Block 515
32.2.3 Exception Handling 516
32.2.4 Data Capture Methods 517
32.3 Challenges 517
32.4 Supporting a Layered Approach 518
32.5 Conclusion 518
Bibliography 518
Part Six SYSTEM APPLICATIONS
Thomas J. Gormley
33 Launch Vehicle Health Management 523
Edward N. Brown, Anthony R. Kelley and Thomas J. Gormley
Overview 523
33.1 Introduction 523
33.2 LVSHM Functionality and Scope 524
33.3 LV Terminology and Operations 526
33.4 LV Reliability Lessons Learned 527
33.5 LV Segment Requirements and Architecture 528
33.6 LVSHM Analysis and Design 529
33.6.1 LVSHM Analysis Process Overview 529
33.6.2 On-Vehicle LVSHM Design 531
33.6.3 On-Ground LVSHM Design 533
33.7 LV LVSHM System Descriptions 534
33.7.1 Evolved Expendable Launch Vehicle LVSHM 535
33.7.2 NASA Space Transportation System LVSHM 535
33.7.3 Advanced Reusable Launch Vehicle LVSHM Test Programs 536
33.8 LVSHM Future System Requirements 537
33.8.1 RLVs and Operationally Responsive Spacelift 537
33.8.2 Human-Rated Launch Vehicles 538
33.8.3 Allocation of LVSHM Functionality 539
33.8.4 Redundancy, Fault Tolerance, and Human Rating 540
33.9 Conclusion 540
Bibliography 541
Contents xxi
34 Robotic Spacecraft Health Management 543
Paula S. Morgan
Overview 543
34.1 Introduction 544
34.2 Spacecraft Health and Integrity Concerns for Deep-Space Missions 544
34.3 Spacecraft SHM Implementation Approaches 546
34.4 Standard FP Implementation 546
34.5 Robotic Spacecraft SHM Allocations 547
34.6 Spacecraft SHM Ground Rules and Requirements 548
34.7 SFP and SIFP Architectures 550
34.7.1 FP Monitor Structure 550
34.7.2 Example of Standard FP Application: Command Loss 551
34.7.3 Example of Standard FP Application: Under-voltage Trip 551
34.8 Conclusion 554
Bibliography 554
35 Tactical Missile Health Management 555
Abdul J. Kudiya and Stephen A. Marotta
Overview 555
35.1 Introduction 555
35.2 Stockpile Surveillance Findings 556
35.3 Probabilistic Prognostics Modeling 557
35.3.1 Stress and Strength Interference Method 559
35.3.2 Cumulative Damage Function Method 559
35.3.3 Weibull Service Life Prediction Method 562
35.4 Conclusion 563
Bibliography 564
36 Strategic Missile Health Management 565
Gregory A. Ruderman
Overview 565
36.1 Introduction 565
36.2 Fundamentals of Solid Rocket Motors 566
36.3 Motor Components 567
36.3.1 Cases 567
36.3.2 Propellant–Liner–Insulator System 567
36.4 Challenges for Strategic Rocket Health Management 568
36.4.1 Material Property Variation 568
36.4.2 Material Aging 569
36.4.3 Defects 569
36.5 State of the Art for Solid Rocket System Health Management (SHM) 570
36.5.1 State of the Art for Deployed SHM Systems 570
36.5.2 State of the Art in Laboratory SHM Demonstrations 571
36.6 Current Challenges Facing SRM SHM 572
36.6.1 SRM SHM Data Acquisition, Storage and Analysis 572
36.6.2 System Longevity and Reliability 573
36.6.3 Lack of Service Life Sensors 573
36.6.4 Business Case 574
xxii Contents
36.7 Conclusion 574
Bibliography 574
37 Rotorcraft Health Management 577
Paula J. Dempsey and James J. Zakrajsek
Overview 577
37.1 Introduction 577
37.2 Rotorcraft System Health Management Standard Practices 579
37.3 New Practices 582
37.4 Lessons Learned 583
37.5 Future Challenges 584
37.6 Conclusion 585
Bibliography 585
38 Commercial Aviation Health Management 589
Philip A. Scandura, Jr., Michael Christensen, Daniel Lutz and Gary Bird
Overview 589
38.1 Commercial Aviation Challenge 590
38.2 Layered Approach to SHM 590
38.3 Evolution of Commercial Aviation SHM 591
38.3.1 First-Generation Systems 591
38.3.2 Second-Generation Systems 591
38.3.3 Third-Generation Systems 592
38.3.4 Fourth-Generation Systems 592
38.4 Commercial State of the Art 593
38.4.1 Primus Epic CMC 593
38.4.2 Boeing 787 Crew Information System/Maintenance System 597
38.5 The Next Generation: Intelligent Vehicles/Sense and Respond 600
38.5.1 Enabling the Shift to Sense and Respond Network-centric Operations 601
38.5.2 Barriers to Adoption 602
38.5.3 Next Steps 602
38.6 Conclusion 603
Bibliography 603
Glossary 605
Acronyms 607
Index 617