马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
《Aircraft Propulsion and Gas Turbine Engines》第二版
飞机推进和燃气涡轮发动机
作者:Ahmed F. El-Sayed
出版社:CRC
出版时间:2017年
《Aircraft Propulsion and Gas Turbine Engines》第二版
《Aircraft Propulsion and Gas Turbine Engines》第二版
《Aircraft Propulsion and Gas Turbine Engines》第二版
《Aircraft Propulsion and Gas Turbine Engines》第二版
目录
Preface
Author
Section I Aero Engines and Gas Turbines
1. History and Classifications of Aeroengines
1.1 Pre–Jet Engine History
1.1.1 Early Activities in Egypt and China
1.1.2 Leonardo da Vinci
1.1.3 Branca’s Stamping Mill
1.1.4 Newton’s Steam Wagon
1.1.5 Barber’s Gas Turbine
1.1.6 Miscellaneous Aero-Vehicle’s Activities in the
Eighteenth and Nineteenth Centuries
1.1.7 Wright Brothers
1.1.8 Significant Events up to the 1940s
1.1.8.1 Aero-Vehicle Activities
1.1.8.2 Reciprocating Engines
1.2 Jet Engines
1.2.1 Jet Engines Inventors: Dr. Hans von Ohain and Sir
Frank Whittle
1.2.1.1 Sir Frank Whittle (1907–1996)
1.2.1.2 Dr. Hans von Ohain (1911–1998)
1.2.2 Turbojet Engines
1.2.3 Turboprop and Turboshaft Engines
1.2.4 Turbofan Engines
1.2.5 Propfan Engine
1.2.6 Pulsejet, Ramjet, and Scramjet Engines
1.2.6.1 Pulsejet Engine
1.2.6.2 Ramjet and Scramjet Engines
1.2.7 Industrial Gas Turbine Engines
1.3 Classifications of Aerospace Engines
1.4 Classification of Jet Engines
1.4.1 Ramjet
1.4.2 Pulsejet
1.4.3 Scramjet
1.4.4 Turboramjet
1.4.5 Turborocket
1.5 Classification of Gas Turbine Engines
1.5.1 Turbojet Engines
1.5.2 Turboprop
1.5.3 Turboshaft
1.5.4 Turbofan Engines
1.5.5 Propfan Engines
1.5.6 Advanced Ducted Fan
1.6 Industrial Gas Turbines
1.7 Non-Airbreathing Engines
1.8 The Future of Aircraft and Powerplant Industries
1.8.1 Closure
Problems
References
2. Performance Parameters of Jet Engines
2.1 Introduction
2.2 Thrust Force
2.3 Factors Affecting Thrust
2.3.1 Jet Nozzle
2.3.2 Airspeed
2.3.3 Mass Airflow
2.3.4 Altitude
2.3.5 Ram Effect
2.4 Engine Performance Parameters
2.4.1 Propulsive Efficiency
2.4.2 Thermal Efficiency
2.4.2.1 Ramjet, Scramjet, Turbojet, and Turbofan
Engines
2.4.2.2 Turboprop and Turboshaft Engines
2.4.3 Propeller Efficiency
2.4.4 Overall Efficiency
2.4.5 Takeoff Thrust
2.4.6 Specific Fuel Consumption
2.4.6.1 Ramjet, Turbojet, and Turbofan Engines
2.4.6.2 Turboprop Engines
2.4.7 Aircraft Range
2.4.8 Range Factor
2.4.9 Endurance Factor
2.4.10 Specific Impulse
2.4.11 Mission Segment Weight Fraction
2.4.12 Route Planning
2.4.12.1 Point of No Return
2.4.12.2 Critical Point
Problems
References
3. Pulsejet and Ramjet Engines
3.1 Introduction
3.2 Pulsejet Engines
3.2.1 Introduction
3.2.2 Valved Pulsejet
3.2.3 Valveless Pulsejet
3.2.4 Pulsating Nature of Flow Parameters in Pulsejet
Engines
3.2.5 Pulse Detonation Engine
3.3 Ramjet Engines
3.3.1 Introduction
3.3.2 Classifications of Ramjet Engines
3.3.2.1 Subsonic–Supersonic Types
3.3.2.2 Fixed Geometry–Variable Geometry Types
3.3.2.3 Liquid-Fueled and Solid-Fueled Types
3.3.3 Ideal Ramjet
3.3.3.1 Real Cycle
3.4 Case Study
3.5 Nuclear Ramjet
3.6 Double-Throat Ramjet Engine
3.7 Solid-Fueled Ramjet Engine
3.8 Summary and Governing Equations for Shock Waves and
Isentropic Flow
3.8.1 Summary
3.8.2 Normal Shock Wave Relations
3.8.3 Oblique Shock Wave Relations
3.8.4 Rayleigh Flow Equations
3.8.5 Isentropic Relation
Problems
References
4. Turbojet Engine
4.1 Introduction
4.2 Single Spool
4.2.1 Examples of Engines
4.2.2 Thermodynamic Analysis
4.2.3 Ideal Case
4.2.4 Actual Case
4.2.4.1 General Description
4.2.4.2 Governing Equations
4.2.5 Comparison between Operative and Inoperative
Afterburner
4.3 Two-Spool Engine
4.3.1 Non-Afterburning Engine
4.3.1.1 Example of Engines
4.3.1.2 Thermodynamic Analysis
4.3.2 Afterburning Engine
4.3.2.1 Examples for Two-Spool Afterburning
Turbojet Engines
4.3.2.2 Thermodynamic Analysis
4.4 Statistical Analysis
4.5 Thrust Augmentation
4.5.1 Water Injection
4.5.2 Afterburning
4.5.3 Pressure Loss in an Afterburning Engine
4.6 Supersonic Turbojet
4.7 Optimization of the Turbojet Cycle
4.8 Micro Turbojet
Problems
References
5. Turbofan Engines
5.1 Introduction
5.2 Forward Fan Unmixed Single-Spool Configuration
5.3 Forward Fan Unmixed Two-Spool Engines
5.3.1 The Fan and Low-Pressure Compressor (LPC) on One
Shaft
5.3.2 Fan Driven by the LPT and the Compressor Driven by
the HPT
5.3.3 A Geared Fan Driven by the LPT and the Compressor
Driven by the HPT
5.3.3.1 Examples for This Configuration
5.4 Forward Fan Unmixed Three-Spool Engine
5.4.1 Examples for Three-Spool Engines
5.5 Forward Fan Mixed-Flow Engine
5.5.1 Mixed-Flow Two-Spool Engine
5.6 Mixed Turbofan with Afterburner
5.6.1 Introduction
5.6.2 Ideal Cycle
5.6.3 Real Cycle
5.7 Aft-Fan
5.8 VTOL and STOL (V/STOL)
5.8.1 Swiveling Nozzles
5.8.2 Switch-in Deflector System
5.8.2.1 Cruise
5.8.2.2 Takeoff or Lift Thrust
5.9 Performance Analysis
5.10 Geared Turbofan Engines
5.11 Summary
Problems
References
6. Shaft Engines: Internal Combustion, Turboprop, Turboshaft, and
Propfan Engines
6.1 Introduction
6.2 Internal Combustion Engines
6.2.1 Introduction
6.2.2 Types of Aero Piston Engine
6.2.2.1 Rotary Engines
6.2.2.2 Reciprocating Engines
6.2.2.3 Supercharging and Turbocharging Engines
6.2.3 Aerodynamics and Thermodynamics of the
Reciprocating Internal Combustion Engine
6.2.3.1 Terminology for the Four-Stroke Engine
6.2.3.2 Air-Standard Analysis
6.2.3.3 Engine Thermodynamics Cycles
6.2.3.4 Superchargers/Turbochargers
6.3 Aircraft Propellers
6.3.1 Introduction
6.3.2 Classifications
6.3.2.1 Source of Power
6.3.2.2 Material
6.3.2.3 Coupling to the Output Shaft
6.3.2.4 Control
6.3.2.5 Number of Propellers Coupled to Each
Engine
6.3.2.6 Direction of Rotation
6.3.2.7 Propulsion Method
6.3.2.8 Number of Blades
6.3.3 Aerodynamic Design
6.3.3.1 Axial Momentum (or Actuator Disk)
Theory
6.3.3.2 Modified Momentum or Simple Vortex
Model
6.3.3.3 Blade Element Considerations
6.3.3.4 Dimensionless Parameters
6.3.3.5 Typical Propeller Performance
6.4 Turboprop Engines
6.4.1 Introduction to Turboprop Engines
6.4.2 Classification of Turboprop Engines
6.4.3 Thermodynamics Analysis of Turboprop Engines
6.4.3.1 Single-Spool Turboprop
6.4.3.2 Two-Spool Turboprop
6.4.4 Analogy with Turbofan Engines
6.4.5 Equivalent Engine Power
6.4.5.1 Static Condition
6.4.5.2 Flight Operation
6.4.6 Fuel Consumption
6.4.7 Turboprop Installation
6.4.8 Details of Some Engines
6.4.9 Performance Analysis
6.4.10 Comparison between Turbojet, Turbofan and
Turboprop Engines
6.5 Turboshaft Engines
6.5.1 Power Generated by Turboshaft Engines
6.5.1.1 Single-Spool Turboshaft
6.5.1.2 Double-Spool Turboshaft
6.5.2 Examples for Turboshaft Engines
6.6 Propfan Engines
6.7 Conclusion
Problems
References
7. High-Speed Supersonic and Hypersonic Engines
7.1 Introduction
7.2 Supersonic Aircraft and Programs
7.2.1 Anglo-French Activities
7.2.1.1 Concorde
7.2.1.2 BAe-Aerospatiale AST
7.2.2 Russian Activities
7.2.2.1 Tupolev TU-144
7.2.3 The U.S. Activities
7.3 The Future of Commercial Supersonic Technology
7.4 Technology Challenges of Future Flight
7.5 High-Speed Supersonic and Hypersonic Propulsion
7.5.1 Introduction
7.5.2 Hybrid-Cycle Engine
7.6 Turboramjet Engine
7.7 Wraparound Turboramjet
7.7.1 Operation as a Turbojet Engine
7.7.2 Operation as a Ramjet Engine
7.8 Over/Under Turboramjet
7.8.1 Turbojet Mode
7.8.2 Dual Mode
7.8.3 Ramjet Mode
7.9 Turboramjet Performance
7.9.1 Turbojet Mode
7.9.2 Ramjet Mode
7.9.3 Dual Mode
7.10 Case Study
7.11 Examples for Turboramjet Engines
7.12 Hypersonic Flight
7.12.1 History of Hypersonic Vehicles
7.12.2 Hypersonic Commercial Transport
7.12.3 Military Applications
7.13 Scramjet Engines
7.13.1 Introduction
7.13.2 Thermodynamics
7.14 Intake of a Scramjet Engine
7.14.1 Case Study
7.15 Combustion Chamber
7.15.1 Fuel Mixing in Parallel Stream
7.15.1.1 Ramp Injectors
7.15.2 Fuel Mixing in Normal Stream
7.16 Nozzle
7.17 Case Study
7.18 Dual-Mode Combustion Engine (Dual Ram-Scramjet)
7.18.1 Aero-Thermodynamics of Dual-Mode Scramjet
Problems
References
8. Industrial Gas Turbines
8.1 Introduction
8.2 Categories of Gas Turbines
8.3 Types of Industrial Gas Turbines
8.4 Single-Shaft Engine
8.4.1 Single Compressor and Turbine
8.4.1.1 Ideal Cycle
8.4.1.2 Real Cycle
8.4.2 Regeneration
8.4.3 Reheat
8.4.4 Intercooling
8.4.5 Combined Intercooling, Regeneration, and Reheat
8.5 Double-Shaft Engine
8.5.1 Free-Power Turbine
8.5.2 Two-Discrete Shafts (Spools)
8.6 Three Spool
8.7 Combined Gas Turbine
8.8 Marine Applications
8.8.1 Additional Components for Marine Applications
8.8.2 Examples for Marine Gas Turbines
8.9 Offshore Gas Turbines
8.10 Micro-Gas Turbines (μ-Gas Turbines)
8.10.1 Micro- versus Typical-Gas Turbines
8.10.2 Design Challenges
8.10.2.1 Manufacturing
8.10.2.2 Selection and Design of Bearings
8.10.2.3 Compressor and Turbine
8.10.3 Applications
Problems
References
Section II Component Design
9. Powerplant Installation and Intakes
9.1 Introduction
9.2 Powerplant Installation
9.3 Subsonic Aircraft
9.3.1 Turbojet and Turbofan Engines
9.3.1.1 Wing Installation
9.3.1.2 Fuselage Installation
9.3.1.3 Combined Wing and Tail Installation
(Three Engines)
9.3.1.4 Combined Fuselage and Tail Installation
9.3.2 Turboprop Installation
9.4 Supersonic Aircraft
9.4.1 Civil Transports
9.4.2 Military Aircraft
9.5 Air Intakes or Inlets
9.6 Subsonic Intakes
9.6.1 Inlet Performance
9.6.2 Performance Parameters
9.6.2.1 Isentropic Efficiency (ηd)
9.6.2.2 Stagnation-Pressure Ratio (rd)
9.6.3 Turboprop Inlets
9.7 Supersonic Intakes
9.7.1 Review of Gas Dynamic Relations for Normal and
Oblique Shocks
9.7.1.1 Normal Shock Waves
9.7.1.2 Oblique Shock Waves
9.7.2 External Compression Intake (Inlet)
9.7.3 Internal Compression Inlet (Intake)
9.7.4 Mixed Compression Intakes
9.8 Matching between Intake and Engine
9.9 Case Study
Problems
References
10. Combustion Systems
10.1 Introduction
10.2 Subsonic Combustion Chambers
10.2.1 Tubular (or Multiple) Combustion Chambers
10.2.2 Tubo-Annular Combustion Chambers
10.2.3 Annular Combustion Chambers
10.3 Supersonic Combustion Chamber
10.4 Combustion Process
10.5 Components of the Combustion Chamber
10.6 Aerodynamics of the Combustion Chamber
10.6.1 Aerodynamics of Diffusers
10.7 Chemistry of Combustion
10.8 The First Law Analysis of Combustion
10.9 Combustion Chamber Performance
10.9.1 Pressure Losses
10.9.2 Combustion Efficiency
10.9.3 Combustion Stability
10.9.4 Combustion Intensity
10.9.5 Cooling
10.9.5.1 Louver Cooling
10.9.5.2 Splash Cooling
10.9.5.3 Film Cooling
10.9.5.4 Convection-Film Cooling
10.9.5.5 Impingement-Film Cooling
10.9.5.6 Transpiration Cooling
10.9.5.7 Effective Cooling
10.10 Material
10.11 Aircraft Fuels
10.11.1 Safety Fuels
10.12 Emissions and Pollutants
10.12.1 Pollutant Formation
10.12.1.1 NOx Emissions
10.12.1.2 Sulfur Dioxide (SO2) Emissions
10.13 The Afterburner
10.14 Supersonic Combustion System
Problems
References
11. Exhaust System
11.1 Introduction
11.2 Nozzle
11.2.1 Governing Equations
11.2.1.1 Convergent-Divergent Nozzle
11.2.1.2 Convergent Nozzle
11.2.2 Variable Geometry Nozzles
11.2.3 Afterburning Nozzles
11.3 Calculation of the Two-Dimensional Supersonic Nozzle
11.3.1 Convergent Nozzle
11.3.2 Divergent Nozzle
11.3.2.1 Analytical Determination of the Contour of
a Nozzle
11.3.2.2 Design Procedure for a Minimum Length
Divergent Nozzle
11.3.2.3 Procedure of Drawing the Expansion
Waves inside the Nozzle
11.4 Thrust Reversal
11.4.1 Classification of Thrust Reverser Systems
11.4.2 Calculation of Ground Roll Distance
11.5 Thrust Vectoring
11.5.1 Governing Equations
11.6 Noise
11.6.1 Introduction
11.6.2 Acoustics Model Theory
11.6.3 Methods Used to Decrease Jet Noise
11.7 High-Speed Vehicles
11.7.1 Conical Nozzles
11.7.2 Bell Nozzles
11.7.2.1 Advantages of Bell-Shaped Nozzle
11.7.2.2 Disadvantages of Bell-Shaped Nozzle
11.7.3 Annular Nozzles
11.7.3.1 Radial Out-Flow Nozzles
11.7.3.2 Radial Inflow Nozzles
Problems
References
12. Centrifugal Compressors
12.1 Introduction
12.2 Layout of Compressor
12.2.1 Impeller
12.2.2 Diffuser
12.2.3 Scroll or Manifold
12.3 Classification of Centrifugal Compressors
12.4 Governing Equations
12.4.1 The Continuity Equation
12.4.2 The Momentum Equation or Euler’s Equation for
Turbomachinery
12.4.3 The Energy Equation or the First Law of
Thermodynamics
12.4.4 Slip Factor σ
12.4.5 Prewhirl
12.4.6 Types of Impeller
12.4.7 Radial Impeller
12.5 The Diffuser
12.5.1 Vaneless Diffuser
12.5.1.1 Incompressible Flow
12.5.1.2 Compressible Flow
12.5.2 Vaned Diffuser
12.6 Discharge Systems
12.7 Characteristic Performance of a Centrifugal Compressor
12.8 Erosion
12.8.1 Introduction
12.8.2 Theoretical Estimation of Erosion
Problems
References
13. Axial Flow Compressors and Fans
13.1 Introduction
13.2 Comparison between Axial and Centrifugal Compressors
13.2.1 Advantages of the Axial Flow Compressor over the
Centrifugal Compressor
13.2.2 Advantages of Centrifugal-Flow Compressor over the
Axial Flow Compressor
13.2.3 Main Points of Comparison between Centrifugal and
Axial Compressors
13.3 Mean Flow (Two-Dimensional Approach)
13.3.1 Types of Velocity Triangles
13.3.2 Variation of Enthalpy Velocity and Pressure in an
Axial Compressor
13.4 Basic Design Parameters
13.4.1 Centrifugal Stress
13.4.2 Tip Mach Number
13.4.3 Fluid Deflection
13.5 Design Parameters
13.6 Three-Dimensional Flow
13.6.1 Axisymmetric Flow
13.6.2 Simplified Radial Equilibrium Equation (SRE)
13.6.3 Free Vortex Method
13.6.4 General Design Procedure
13.7 Complete Design Process for Compressors
13.8 Rotational Speed (rpm) and Annulus Dimensions
13.9 Determine the Number of Stages (Assuming Stage Efficiency)
13.10 Calculation of Air Angles for Each Stage at the Mean Section
13.10.1 First Stage
13.10.2 Stages from (2) to (n - 1)
13.10.3 Last Stage
13.11 Variation of Air Angles from Root to Tip Based on Type of
Blading (Either Free Vortex, Exponential, or First Power
Methods)
13.12 Blade Design
13.12.1 Cascade Measurements
13.12.2 Choosing the Type of Airfoil
13.12.3 Stage Performance
13.13 Compressibility Effects
13.14 Performance
13.14.1 Single Stage
13.14.2 Multistage Compressor
13.14.3 Compressor Map
13.14.4 Stall and Surge
13.14.5 Surge Control Methods
13.14.5.1 Multi-Spool Compressor
13.14.5.2 Variable Vanes
13.14.5.3 Air Bleed
13.15 Case Study
13.15.1 Mean Section Data
13.15.2 Variations from Hub to Tip
13.15.3 Details of Flow in Stage Number 2
13.15.4 Number of Blades and Stresses of the Seven Stages
13.15.5 Compressor Layout
13.16 Erosion
Problems
References
14. Axial Turbines
14.1 Introduction
14.2 Comparison between Axial-Flow Compressors and Turbines
14.3 Aerodynamics and Thermodynamics for a Two-Dimensional
Flow
14.3.1 Velocity Triangles
14.3.2 Euler Equation
14.3.3 Efficiency, Losses, and Pressure Ratio
14.3.4 Nondimensional Quantities
14.3.5 Several Remarks
14.4 Three-Dimensional Analysis
14.4.1 Free Vortex Design
14.4.2 Constant Nozzle Angle Design (α2)
14.4.3 General Case
14.4.4 Constant Specific Mass Flow Stage
14.5 Preliminary Design
14.5.1 Main Design Steps
14.5.2 Aerodynamic Design
14.5.3 Blade Profile Selection
14.5.4 Mechanical and Structural Design
14.5.4.1 Centrifugal Stresses
14.5.4.2 Centrifugal Stresses on Blades
14.5.4.3 Centrifugal Stresses on Disks
14.5.4.4 Gas Bending Stress
14.5.4.5 Centrifugal Bending Stress
14.5.4.6 Thermal Stress
14.5.5 Turbine Cooling
14.5.5.1 Turbine Cooling Techniques
14.5.5.2 Mathematical Modeling
14.5.6 Losses and Efficiency
14.5.6.1 Profile Loss (Yp)
14.5.6.2 Annulus Loss
14.5.6.3 Secondary Flow Loss
14.5.6.4 Tip Clearance Loss (Yk)
14.6 Turbine Map
14.7 Case Study
14.7.1 Design Point
14.7.1.1 Mean Line Flow
14.7.1.2 Three-Dimensional Variations
14.7.1.3 Number of Blades for Nozzle and Rotor
14.7.1.4 Chord Length at Any Section along Blade
Height for Nozzle and Rotor
14.7.1.5 Blade Material Selection
14.7.1.6 Stresses on Rotor Blades
14.7.1.7 Losses Calculations
14.7.1.8 Turbine Efficiency
14.8 Summary
Problems
References
15. Radial Inflow Turbines
15.1 Introduction
15.2 Thermodynamic
15.3 Dimensionless Parameters
15.3.1 Stage Loading
15.3.2 Flow Coefficient
15.3.3 Rotor Meridional Velocity Ratio
15.3.4 Specific Speed
15.4 Preliminary Design
15.5 Breakdown of Losses
15.6 Design for Optimum Efficiency
15.7 Cooling
Problems
References
16. Module Matching
16.1 Introduction
16.2 Off-Design Operation of a Single-Shaft Gas Turbine Driving a
Load
16.2.1 Matching Procedure
16.2.2 Different Loads
16.3 Off-Design of a Free Turbine Engine
16.3.1 Gas Generator
16.3.2 Free Power Turbine
16.4 Off-Design of Turbojet Engine
Problems
References
17. Selected Topics
17.1 Introduction
17.2 New Trends in Aeroengines
17.2.1 Intercooler
17.2.2 Intercooler and Recuperator
17.2.3 Inter-Turbine Burner
17.2.4 Double-Bypass/Three-Stream Turbofan
17.2.5 3D Printing as the Future of Manufacturing Aircraft
and Aircraft Engines
17.3 Aviation Environmental Issues
17.3.1 Introduction
17.3.2 Sustainable Alternative Fuels
17.3.2.1 Introduction
17.3.2.2 Potential Second-Generation Biofuel
Feedstocks
17.3.2.3 Key Advantages of Second-Generation
Biofuels for Aviation
17.3.2.4 Commercial and Demonstration Flights
17.3.2.5 Biofuels for Aviation Economic Viability
17.4 Unmanned Aircraft Vehicles
17.4.1 Introduction
17.4.2 Categorization of UAV
17.4.2.1 Based on Function
17.4.2.2 Based on Range/Altitude
17.4.2.3 Based on Size
17.4.2.4 European Classifications (EUROUVS)
17.4.3 Power Plant of UAV
17.4.3.1 Electric Engine
17.4.3.2 Internal Combustion (IC) Engines
17.4.3.3 Gas Turbine Engines
17.4.3.4 Engine Characteristics
Problems
References
Section III Rocket Propulsion
18. Introduction to Rocketry
18.1 Introduction
18.2 History
18.2.1 Important Events
18.2.2 Recent and Future Plans for Rocket and Space Flights
(2014 and Beyond)
18.3 Missile Configuration
18.3.1 External Configuration
18.3.2 Main Sections of a Missile Body
18.3.2.1 Nose Section (Fore-Body)
18.3.2.2 Mid-Section
18.3.2.3 Tail Section
18.3.3 The Auxiliary Components (Wings, Fins, and
Canards)
18.3.3.1 Wings
18.3.3.2 Fins
18.4 Classification
18.4.1 Propulsion
18.4.2 Energy Source
18.4.3 Types of Missiles
18.4.4 Launch Mode
18.4.5 Range
18.4.6 Warheads
18.4.7 Guidance Systems
18.4.8 Number of Stages
18.4.9 Application
18.4.10 Military Rockets
18.4.10.1 According to Purpose and Use
18.4.10.2 According to the Location of the
Launching Site and Target
18.4.10.3 According to the Main Characteristics
18.5 Rocket Performance Parameters
18.5.1 Thrust Force
18.5.2 Effective Exhaust Velocity (Veff)
18.5.3 Exhaust Velocity (ue)
18.5.4 Important Nozzle Relations
18.5.5 Characteristic Velocity (C*)
18.5.6 Thrust Coefficient (CF)
18.5.7 Total Impulse (It)
18.5.8 Specific Impulse (Isp)
18.5.9 Specific Propellant Consumption
18.5.10 Mass Ratio (MR)
18.5.11 Propellant Mass Fraction (ζ)
18.5.12 Impulse-to-Weight Ratio
18.5.13 Efficiencies
18.5.13.1 Thermal Efficiency
18.5.13.2 Propulsive Efficiency
18.5.13.3 Overall Efficiency (η0)
18.6 The Rocket Equation
18.6.1 Single-Stage Rocket
18.6.1.1 Negligible Drag
18.6.1.2 Negligible Drag and Gravity Loss
18.6.2 Multistage Rockets
18.6.3 Rocket Equation for a Multistage Series Rocket
18.6.4 Rocket Equation for a Parallel Multistage Rocket
18.6.5 Advantages of Staging
18.6.6 Disadvantages of Staging
18.7 Space Flight
18.7.1 Orbital Velocity
18.7.2 Escape Velocity
Problems
References
19. Rocket Engines
19.1 Chemical Rocket Engines
19.1.1 Introduction
19.1.2 Performance Characteristics
19.2 Solid Propellants
19.2.1 Introduction
19.2.2 Composition of a Solid Propellant
19.2.3 Basic Definitions
19.2.4 Burning Rate
19.2.5 Characteristics of Some Solid Propellants
19.2.6 Liquid-Propellant Rocket Engines (LRE)
19.2.6.1 Introduction
19.2.7 Applications
19.2.7.1 Propellant Feed System of LREs
19.3 Liquid Propellants
19.3.1 Monopropellant
19.3.2 Bipropellant
19.3.3 Fundamental Relations
19.4 Pump-Fed System
19.5 Rocket Pumps
19.5.1 Introduction
19.5.2 Centrifugal Pumps
19.5.3 Multistage Centrifugal Pumps
19.5.4 Multistage Axial Pumps
19.6 Performance of Centrifugal Pumps
19.7 Pump Performance Parameters
19.7.1 Pump Specific Speed (Ns)
19.8 Features of Modules of the Space Shuttle Main Engine (SSME)
19.9 Axial Pumps
19.10 Parallel and Series Connections
19.11 Pump Materials and Fabrication Processes
19.12 Axial Turbines
19.12.1 Single-Stage Impulse Turbine
19.12.2 Multispool Impulse Turbines
19.12.3 Reaction Turbines
19.13 Hybrid Propulsion
19.13.1 Introduction
19.13.2 Mathematical Modeling
19.13.3 Advantages and Disadvantages of Hybrid Engines
19.14 Nuclear Rocket Propulsion
19.14.1 Introduction
19.14.2 Solid-Core Reactors
19.14.3 Gas-Core Reactor
19.15 Electric Rocket Propulsion
19.15.1 Introduction
19.15.2 Electrostatic Propulsion
19.15.2.1 Introduction
19.15.2.2 Mathematical Modeling
19.15.2.3 Multiply Charged Ion Species
19.15.2.4 Total Efficiency
19.15.2.5 Electrical Efficiency
19.15.3 Electrothermal
19.15.3.1 Introduction
19.15.3.2 Resistojets
19.15.3.3 Arcjets
19.15.3.4 Electromagnetic Engines
Problems
References
Appendix A: Glossary
Appendix B: Turbofan
Appendix C: Samples of Gas Turbines (Representative Manufacturers)
Index
《Aircraft Propulsion and Gas Turbine Engines》第一版看这个帖子
http://forum.chnjet.com/thread-30814-1-1.html
现在下载的这个版本是AZW3格式转换的PDF
专业书籍
下载地址:(回复后可见)
|