马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
《Advanced Flight Dynamics with Elements of Flight Control》
具有飞行控制要素的先进飞行动力学
作者:Nandan K. Sinha and N. Ananthkrishnan
出版社:CRC
出版时间:2017年
《Advanced Flight Dynamics with Elements of Flight Control》
《Advanced Flight Dynamics with Elements of Flight Control》
《Advanced Flight Dynamics with Elements of Flight Control》
《Advanced Flight Dynamics with Elements of Flight Control》
目录
Preface, xiii
Authors, xvii
Chapter 1 ◾ Six Degrees of Freedom Equations of Motion 1
1.1 DEFINITION OF AXIS SYSTEMS 5
1.1.1 Body-Fixed Axis System 5
1.1.2 Earth-Fixed Axis System 7
1.1.3 Wind-Fixed Axis System 7
1.2 DEFINITION OF VARIABLES 10
1.3 3–2–1 TRANSFORMATION 16
1.3.1 Earth- and Body-Fixed Axes 17
1.3.2 Earth- and Wind-Fixed Axes 19
1.3.3 Wind- and Body-Fixed Axes 21
1.3.4 Relation between the Body-Axis and Wind-Axis Euler Angles 22
1.4 RELATION BETWEEN ANGULAR VELOCITY VECTOR AND EULER ANGLE RATES 24
1.4.1 Relation between Body-Axis Angular Velocity Components (p, q, r) and Euler Angle Rates (,,) 24
1.4.2 Relation between Wind-Axis Angular Velocity Components (pw , qw , rw) and Euler Angle Rates (,,)μ 27
1.4.3 Difference between the Body-Axis Angular Velocity (p, q, r) and Wind-Axis Angular Velocity (pw , qw , rw) 27
vi ◾ Contents
1.5 TRANSLATIONAL EQUATIONS OF MOTION 29
1.6 REPRESENTATION OF FORCES ACTING ON THE AIRPLANE 34
1.6.1 Gravity 34
1.6.2 Aerodynamic Force 35
1.6.3 Propulsive Force 37
1.7 ROTATIONAL EQUATIONS OF MOTION 38
1.8 REPRESENTATION OF MOMENTS ACTING ON THE AIRPLANE 42
1.8.1 Aerodynamic Moment 42
1.8.2 Propulsive Moment 43
1.9 SELECTION OF EQUATIONS FOR SPECIFIC PROBLEMS 44
1.9.1 Simulation of Arbitrary Maneuver 45
1.9.2 Steady States Such as Level Flight, Shallow Climb/Descent, Horizontal Turn, Spin, Etc. 45
1.9.3 Longitudinal Flight Steady States 47
1.9.4 Constant-Velocity Flight in the Longitudinal Plane 47
1.9.5 Constant-Velocity Rolling Maneuvers 48
1.10 EQUATIONS OF MOTION IN THE PRESENCE OF WIND 48
REFERENCE 54
Chapter 2 ◾ Modeling and Interpreting the Aerodynamics 55
2.1 DEFINITION OF AERODYNAMIC COEFFICIENTS 55
2.2 MODELING OF AERODYNAMIC COEFFICIENTS 57
2.3 STATIC AERODYNAMIC COEFFICIENT TERMS 60
2.3.1 Longitudinal Coefficients with Angle of Attack 60
2.3.2 Lateral Coefficients with Angle of Attack and Sideslip Angle 64
2.3.3 Variation with Mach Number 66
2.3.4 Variation with Control Surface Deflection 68
2.4 DYNAMIC AERODYNAMIC COEFFICIENT TERMS 70
2.4.1 Pitching Moment Due to Relative Pitch Rate, Cmq1 71
Contents ◾ vii
2.4.2 Yawing and Rolling Moment Due to Relative Yaw Rate, Cnr1 and Clr1 72
2.5 FLOW CURVATURE COEFFICIENT TERMS 73
2.5.1 Yawing and Rolling Moment Due to Wind-Axis Yaw Rate, Cnr2 and Clr2 73
2.5.2 Pitching Moment Due to Wind-Axis Pitch Rate, Cmq2 74
2.5.3 Rolling Moment Due to Wind-Axis Roll Rate, Clp2 74
2.6 DOWNWASH LAG TERMS 76
2.7 SAMPLE SIMULATION CASES 78
2.7.1 Example Airplane and Aerodynamic Models 82
2.7.1.1 F-18 Low-Angle-of-Attack Model 82
2.7.1.2 F-18/HARV High-Angle-of-Attack Model 83
2.7.1.3 Pseudo-Steady-State Model for Rapid Rolling Maneuvers 83
2.7.2 Example Simulation Results 85
REFERENCES 102
Chapter 3 ◾ Introduction to Dynamical Systems Theory 103
3.1 TYPES OF STEADY STATES 108
3.1.1 Equilibrium States 109
3.1.2 Periodic States 110
3.1.3 Quasi-Periodic States 110
3.1.4 Chaotic States 110
3.2 STABILITY OF STEADY STATES 110
3.2.1 Stability of Equilibrium States 111
3.2.2 Stability of Periodic Orbits 118
3.3 BIFURCATIONS OF STEADY STATES 122
3.3.1 Stationary Bifurcations of Equilibrium States 125
3.3.1.1 Saddle-Node Bifurcation 125
3.3.1.2 Transcritical Bifurcation 128
3.3.1.3 Pitchfork Bifurcation 129
3.3.1.4 Perturbation to Transcritical and Pitchfork Bifurcations 130
viii ◾ Contents
3.3.2 Hopf Bifurcation of Equilibrium States 131
3.3.3 Bifurcations of Periodic States 133
3.4 CONTINUATION ALGORITHMS 136
3.5 CONTINUATION FRAMEWORK FOR MULTIPARAMETER SYSTEMS 144
3.5.1 Scheduling the Parameters in a Multiparameter System 145
3.5.2 Influence of Aircraft Control Parameters on Constraints 148
REFERENCES 156
Chapter 4 ◾ Longitudinal Flight Dynamics 157
4.1 LONGITUDINAL STEADY STATES (TRIMS) 160
4.1.1 Modeling Engine Thrust 161
4.2 LONGITUDINAL TRIM AND STABILITY ANALYSIS 163
4.2.1 Longitudinal Trim and Stability with Varying Angle of Attack 163
4.2.2 Longitudinal Trim and Stability with Varying Throttle Setting 165
4.3 LEVEL FLIGHT TRIM AND STABILITY ANALYSIS 167
4.3.1 Level Flight Airplane Performance 171
4.4 CLIMBING/DESCENDING FLIGHT TRIM AND STABILITY ANALYSIS 173
4.5 PULL-UP AND PUSH-DOWN MANEUVERS 176
4.6 WIND EFFECTS ON LONGITUDINAL DYNAMIC MODES 182
REFERENCE 185
Chapter 5 ◾ Longitudinal Feedback Control 187
5.1 GENERIC FLIGHT CONTROL SYSTEM 187
5.2 AIRFRAME, SENSOR, FILTER, ACTUATOR 188
5.3 GENERIC LONGITUDINAL FCS STRUCTURE 191
5.4 LONGITUDINAL FLIGHT CONTROL MODES 194
5.5 LONGITUDINAL FEEDBACK CONTROL LAW 196
Contents ◾ ix
5.5.1 Gain Scheduling 199
5.6 DYNAMIC INVERSION CONTROL LAW 204
5.7 CLOSED-LOOP STABILITY ANALYSIS 207
5.7.1 With Thrust Vectoring Control Included 212
REFERENCES 215
Chapter 6 ◾ Lateral-Directional Flight Dynamics and Control 217
6.1 LATERAL-DIRECTIONAL MODES IN STRAIGHT AND LEVEL LONGITUDINAL FLIGHT 218
6.2 HORIZONTAL LEVEL TURN TRIMS 225
6.2.1 Formulation and Constraints 226
6.2.2 Parameter Schedules 227
6.2.3 Turn Performance 228
6.3 NONZERO SIDESLIP TRIM AND STABILITY ANALYSIS 234
6.4 WING ROCK ONSET AND ITS PREDICTION 237
6.4.1 Analytical Criterion for Wing Rock Onset 239
6.4.1.1 Second-Order Form of the Perturbed Lateral-Directional Equations 243
6.4.1.2 Matrix Form of the Perturbed Lateral-Directional Equations 246
6.4.1.3 Static Instability Criterion 246
6.4.1.4 Approximation by Hamiltonian Dynamical System 247
6.4.1.5 Dynamic Instability Mechanism 249
6.5 LATERAL-DIRECTIONAL FEEDBACK CONTROL SYSTEM 251
REFERENCES 255
Chapter 7 ◾ Coupled Lateral–Longitudinal Flight Dynamics 257
7.1 INERTIA COUPLED ROLL MANEUVERS 260
7.1.1 Zero-Sideslip Roll Maneuvers 266
7.1.2 Velocity-Vector Roll Maneuvers 269
7.2 HIGH AOA FLIGHT DYNAMICS AND SPIN 272
x ◾ Contents
7.2.1 Analytical Criterion for Spin Susceptibility 277
7.2.1.1 Derivation of the Criterion 279
7.3 BIFURCATION TAILORING/TRIM SHAPING AS CONTROL STRATEGY 282
7.3.1 Linear ARI Law for Jump Prevention 283
7.3.2 Trim Shaping for Level Flight Trims 285
7.3.3 Rolling Pull-Down Maneuver with Zero Sideslip 287
7.4 CONTROL PROTOTYPING FOR RECOVERY FROM SPIN 289
7.4.1 Spin Recovery Using Sliding Mode Control 293
7.5 CAREFREE MANEUVERING USING SLIDING MODE CONTROLLER 294
7.5.1 Minimum Radius Turn Maneuver Using Sliding Mode Controller 295
7.5.2 Maneuver Design Based on AER 297
REFERENCES 302
Chapter 8 ◾ Dynamics and Control of a 10-Thruster Flight Vehicle 303
8.1 FLIGHT DYNAMICS OF THE 10-THRUSTER DACS 303
8.2 MODELING THE THRUSTER FORCES AND MOMENTS 308
8.3 MODELING THE CHANGE IN CG AND MOMENTS OF INERTIA 310
8.4 MODELING THE AERODYNAMIC FORCES AND MOMENTS 312
8.5 CONTROL AND GUIDANCE FRAMEWORK FOR 10-THRUSTER DACS 314
8.6 DACS CONTROL LAW 316
8.6.1 Navigation Equations and Flight Path Controller 316
8.6.2 Attitude Equations and Attitude Controller 318
8.6.3 Rate Equations and Rate Controller 319
8.6.4 Issue of Invertibility 321
8.6.5 The Question of Stability 321
8.7 DACS GUIDANCE LAW 322
Contents ◾ xi
8.7.1 Derivation of Dynamic Inversion-Based Guidance Law 323
8.7.1.1 In Terms of Azimuth and Elevation Angles 325
8.7.1.2 A Question of Invertibility 328
8.7.1.3 Decoding the Inversion-Based
Guidance Law 328
8.8 SIMULATION OF 10-THRUSTER DACS FLIGHT WITH GUIDANCE AND CONTROL 329
REFERENCE 334
专业书籍
下载地址:(回复后可见)
|