马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 请叫我雷锋 于 2017-7-28 08:38 编辑
《Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration》第三版
飞机系统:机械、电气和航空电子系统集成
作者:
Ian Moir
Allan Seabridge
出版社:Wiley
出版时间:2008年
《Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration》
《Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration》
《Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration》
《Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration》
《Aircraft Systems: Mechanical, Electrical and Avionics Subsystems Integration》
目录
Foreword xvii
Series Preface xix
About the Authors xxi
Acknowledgements xxiii
List of Abbreviations xxv
Introduction xxxv
Systems Integration xxxvi
Systems Interaction xxxix
1 Flight Control Systems 1
1.1 Introduction 1
1.2 Principles of Flight Control 3
1.3 Flight Control Surfaces 4
1.4 Primary Flight Control 5
1.5 Secondary Flight Control 5
1.6 Commercial Aircraft 7
1.6.1 Primary Flight Control 7
1.6.2 Secondary Flight Control 7
1.7 Flight Control Linkage Systems 9
1.7.1 Push-Pull Control Rod System 10
1.7.2 Cable and Pulley System 11
1.8 High Lift Control Systems 13
1.9 Trim and Feel 15
1.9.1 Trim 15
1.9.2 Feel 17
1.10 Flight Control Actuation 18
1.10.1 Simple Mechanical/Hydraulic Actuation 19
1.10.2 Mechanical Actuation with Electrical Signalling 21
viii Contents
1.10.3 Multiple Redundancy Actuation 22
1.10.4 Mechanical Screwjack Actuator 26
1.10.5 Integrated Actuator Package (IAP) 27
1.10.6 Advanced Actuation Implementations 30
1.11 Civil System Implementations 34
1.11.1 Top-Level Comparison 35
1.11.2 Airbus Implementation 36
1.12 Fly-By-Wire Control Laws 40
1.13 A380 Flight Control Actuation 41
1.14 Boeing 777 Implementation 44
1.15 Interrelationship of Flight Control, Guidance and Flight
Management 48
2 Engine Control Systems 51
2.1 Introduction 51
2.1.1 Engine/Airframe Interfaces 52
2.2 Engine Technology and Principles of Operation 53
2.3 The Control Problem 55
2.3.1 Fuel Flow Control 56
2.3.2 Air Flow Control 58
2.3.3 Control Systems 59
2.3.4 Control System Parameters 60
2.3.5 Input Signals 60
2.3.6 Output Signals 62
2.4 Example Systems 62
2.5 Design Criteria 71
2.6 Engine Starting 73
2.6.1 Fuel Control 73
2.6.2 Ignition Control 74
2.6.3 Engine Rotation 75
2.6.4 Throttle Levers 77
2.6.5 Starting Sequence 78
2.7 Engine Indications 78
2.8 Engine Oil Systems 81
2.9 Engine Offtakes 81
2.10 Reverse Thrust 83
2.11 Engine Control on Modern Civil Aircraft 84
3 Fuel Systems 87
3.1 Introduction 87
3.2 Characteristics of Fuel Systems 89
3.3 Description of Fuel System Components 90
3.3.1 Fuel Transfer Pumps 90
3.3.2 Fuel Booster Pumps 91
3.3.3 Fuel Transfer Valves 92
3.3.4 Non-Return Valves (NRVs) 93
Contents ix
3.4 Fuel Quantity Measurement 94
3.4.1 Level Sensors 94
3.4.2 Fuel Gauging Probes 96
3.4.3 Fuel Quantity Measurement Basics 96
3.4.4 Tank Shapes 97
3.4.5 Fuel Properties 98
3.4.6 Fuel Quantity Measurement Systems 101
3.4.7 Fokker F50/F100 System 101
3.4.8 Airbus A320 System 103
3.4.9 ‘Smart' Probes 104
3.4.10 Ultrasonic Probes 105
3.5 Fuel System Operating Modes 105
3.5.1 Pressurisation 106
3.5.2 Engine Feed 106
3.5.3 Fuel Transfer 108
3.5.4 Refuel/Defuel 109
3.5.5 Vent Systems 111
3.5.6 Use of Fuel as a Heat Sink 112
3.5.7 External Fuel Tanks 112
3.5.8 Fuel Jettison 113
3.5.9 In-Flight Refuelling 114
3.6 Integrated Civil Aircraft Systems 116
3.6.1 Bombardier Global Express 117
3.6.2 Boeing 777 119
3.6.3 A340-500/600 Fuel System 120
3.7 Fuel Tank Safety 128
3.7.1 Principles of Fuel Inerting 129
3.7.2 Air Separation Technology 130
3.7.3 Typical Fuel Inerting System 131
3.8 Polar Operations – Cold Fuel Management 133
3.8.1 Minimum Equipment List (MEL) 133
3.8.2 Cold Fuel Characteristics 134
3.8.3 Fuel Temperature Indication 135
4 Hydraulic Systems 137
4.1 Introduction 137
4.2 Hydraulic Circuit Design 138
4.3 Hydraulic Actuation 142
4.4 Hydraulic Fluid 144
4.5 Fluid Pressure 145
4.6 Fluid Temperature 145
4.7 Fluid Flow Rate 146
4.8 Hydraulic Piping 146
4.9 Hydraulic Pumps 147
4.10 Fluid Conditioning 151
x Contents
4.11 Hydraulic Reservoir 152
4.12 Warnings and Status 152
4.13 Emergency Power Sources 153
4.14 Proof of Design 154
4.15 Aircraft System Applications 155
4.15.1 The Avro RJ Hydraulic System 156
4.15.2 The BAE SYSTEMS Hawk 200 Hydraulic
System 161
4.15.3 Tornado Hydraulic System 161
4.16 Civil Transport Comparison 163
4.16.1 Airbus A320 164
4.16.2 Boeing 767 165
4.17 Landing Gear Systems 167
4.17.1 Nose Gear 167
4.17.2 Main Gear 168
4.17.3 Braking Anti-Skid and Steering 169
4.17.4 Electronic Control 172
4.17.5 Automatic Braking 173
4.17.6 Multi-Wheel Systems 175
4.17.7 Brake Parachute 178
5 Electrical Systems 181
5.1 Introduction 181
5.1.1 Electrical Power Evolution 181
5.2 Aircraft Electrical System 184
5.3 Power Generation 185
5.3.1 DC Power Generation 185
5.3.2 AC Power Generation 186
5.3.3 Power Generation Control 188
5.4 Primary Power Distribution 199
5.5 Power Conversion and Energy Storage 201
5.5.1 Inverters 201
5.5.2 Transformer Rectifier Units (TRUs) 201
5.5.3 Auto-Transformers 202
5.5.4 Battery Chargers 202
5.5.5 Batteries 203
5.6 Secondary Power Distribution 203
5.6.1 Power Switching 203
5.6.2 Load Protection 204
5.7 Typical Aircraft DC System 207
5.8 Typical Civil Transport Electrical System 208
5.9 Electrical Loads 210
5.9.1 Motors and Actuation 210
5.9.2 DC Motors 211
5.9.3 AC Motors 212
5.9.4 Lighting 212
Contents xi
5.9.5 Heating 213
5.9.6 Subsystem Controllers and Avionics
Systems 213
5.9.7 Ground Power 214
5.10 Emergency Power Generation 214
5.10.1 Ram Air Turbine 215
5.10.2 Backup Power Converters 215
5.10.3 Permanent Magnet Generators (PMGs) 216
5.11 Recent Systems Developments 218
5.11.1 Electrical Load Management System (ELMS) 218
5.11.2 Variable Speed Constant Frequency (VSCF) 220
5.11.3 270 VDC Systems 227
5.11.4 More-Electric Aircraft (MEA) 227
5.12 Recent Electrical System Developments 228
5.12.1 Airbus A380 Electrical System Overview 229
5.12.2 A400M 234
5.12.3 B787 Electrical Overview 234
5.13 Electrical Systems Displays 237
6 Pneumatic Systems 239
6.1 Introduction 239
6.2 Use of Bleed Air 240
6.3 Engine Bleed Air Control 244
6.4 Bleed Air System Indications 247
6.5 Bleed Air System Users 247
6.5.1 Wing and Engine Anti-Ice 248
6.5.2 Engine Start 250
6.5.3 Thrust Reversers 251
6.5.4 Hydraulic Systems 251
6.6 Pitot Static Systems 252
6.6.1 Innovative Methods of Pitot-Static
Measurement 256
7 Environmental Control Systems 259
7.1 Introduction 259
7.2 The Need for a Controlled Environment 260
7.2.1 Kinetic Heating 260
7.2.2 Solar Heating 261
7.2.3 Avionics Heat Loads 262
7.2.4 Airframe System Heat Loads 262
7.2.5 The Need for Cabin Conditioning 262
7.2.6 The Need for Avionics Conditioning 263
7.3 The International Standard Atmosphere (ISA) 263
7.4 Environmental Control System Design 266
7.4.1 Ram Air Cooling 266
7.4.2 Fuel Cooling 267
xii Contents
7.4.3 Engine Bleed 267
7.4.4 Bleed Flow and Temperature Control 269
7.5 Cooling Systems 271
7.5.1 Air Cycle Refrigeration Systems 271
7.5.2 Turbofan System 272
7.5.3 Bootstrap System 272
7.5.4 Reversed Bootstrap 274
7.5.5 Ram Powered Reverse Bootstrap 274
7.5.6 Vapour Cycle Systems 275
7.5.7 Liquid Cooled Systems 276
7.5.8 Expendable Heat Sinks 277
7.6 Humidity Control 278
7.7 The Inefficiency of Present Systems 279
7.8 Air Distribution Systems 279
7.8.1 Avionics Cooling 279
7.8.2 Unconditioned Bays 280
7.8.3 Conditioned Bays 280
7.8.4 Conditioned Bay Equipment Racking 281
7.8.5 Ground Cooling 282
7.8.6 Cabin Distribution Systems 283
7.9 Cabin Noise 284
7.10 Cabin Pressurisation 284
7.11 Hypoxia 287
7.12 Molecular Sieve Oxygen Concentrators 288
7.13 g Tolerance 291
7.14 Rain Dispersal 292
7.15 Anti-Misting and De-Misting 293
7.16 Aircraft Icing 293
8 Emergency Systems 297
8.1 Introduction 297
8.2 Warning Systems 298
8.3 Fire Detection and Suppression 301
8.4 Emergency Power Sources 305
8.5 Explosion Suppression 307
8.6 Emergency Oxygen 308
8.7 Passenger Evacuation 308
8.8 Crew Escape 310
8.9 Computer-Controlled Seats 312
8.10 Ejection System Timing 313
8.11 High Speed Escape 314
8.12 Crash Recorder 314
8.13 Crash Switch 315
8.14 Emergency Landing 315
8.15 Emergency System Testing 317
Contents xiii
9 Rotary Wing Systems 319
9.1 Introduction 319
9.2 Special Requirements of Helicopters 320
9.3 Principles of Helicopter Flight 321
9.4 Helicopter Flight Control 324
9.5 Primary Flight Control Actuation 325
9.5.1 Manual Control 326
9.5.2 Auto-Stabilisation 328
9.5.3 Autopilot Modes 330
9.6 Key Helicopter Systems 333
9.6.1 Engine and Transmission System 335
9.6.2 Hydraulic Systems 338
9.6.3 Electrical System 340
9.6.4 Health Monitoring System 341
9.6.5 Specialised Helicopter Systems 342
9.7 Helicopter Auto-Flight Control 343
9.7.1 EH 101 Flight Control System 343
9.7.2 NOTAR Method of Yaw Control 346
9.8 Active Control Technology 349
9.9 Advanced Battlefield Helicopter 350
9.9.1 Target Acquisition and Designator System
(TADS)/Pilots Night Vision System (PNVS) 350
9.9.2 AH-64 C/D Longbow Apache 353
9.10 Tilt Rotor Systems 357
9.10.1 Tilt Rotor Concept and Development 357
9.10.2 V-22 OSPREY 358
9.10.3 Civil Tilt Rotor 366
10 Advanced Systems 371
10.1 Introduction 371
10.1.1 STOL Manoeuvre Technology
Demonstrator (SMTD) 371
10.1.2 Vehicle Management Systems (VMS) 372
10.1.3 More-Electric Aircraft 372
10.1.4 More-Electric Engine 373
10.2 Stealth 374
10.2.1 Joint Strike Fighter (JSF) 374
10.3 Integrated Flight and Propulsion
Control (IFPC) 375
10.4 Vehicle Management System 377
10.5 More-Electric Aircraft 381
10.5.1 Engine Power Offtakes 381
10.5.2 Boeing 787 (More-Electric) Electrical System 382
10.5.3 More-Electric Hydraulic System 384
10.5.4 More-Electric Environmental Control
System 386
xiv Contents
10.6 More-Electric Actuation 388
10.6.1 Electro-Hydrostatic Actuators (EHA) 388
10.6.2 Electro-Mechanical Actuators (EMA) 388
10.6.3 Electric Braking 388
10.7 More-Electric Engine 389
10.7.1 Conventional Engine Characteristics 390
10.7.2 More-Electric Engine Characteristics 390
10.8 Impact of Stealth Design 393
10.8.1 Lockheed F-117A Nighthawk 394
10.8.2 Northrop B-2 Spirit 396
10.8.3 Joint Strike Fighter – F-35 Lightning II 401
10.9 Technology Developments/Demonstrators 402
10.9.1 Fault Tolerant 270VDC Electrical Power
Generation System 402
10.9.2 Thermal and Energy Management Module 402
10.9.3 AFTI F-16 Flight Demonstration 403
11 System Design and Development 407
11.1 Introduction 407
11.1.1 Systems Design 408
11.1.2 Development Processes 408
11.2 System Design 408
11.2.1 Key Agencies and Documentation 408
11.2.2 Design Guidelines and Certification
Techniques 409
11.2.3 Key Elements of the Development Process 410
11.3 Major Safety Processes 411
11.3.1 Functional Hazard Analysis (FHA) 412
11.3.2 Preliminary System Safety Analysis (PSSA) 413
11.3.3 System Safety Analysis (SSA) 414
11.3.4 Common Cause Analysis (CCA) 414
11.4 Requirements Capture 415
11.4.1 Top-Down Approach 415
11.4.2 Bottom-Up Approach 416
11.4.3 Requirements Capture Example 416
11.5 Fault Tree Analysis (FTA) 418
11.6 Dependency Diagram 420
11.7 Failure Modes and Effects Analysis (FMEA) 422
11.8 Component Reliability 423
11.8.1 Analytical Methods 423
11.8.2 In-Service Data 424
11.9 Dispatch Reliability 424
11.10 Markov Analysis 425
11.11 Development Processes 427
11.11.1 The Product Life Cycle 427
11.11.2 Concept Phase 428
Contents xv
11.11.3 Definition Phase 430
11.11.4 Design Phase 431
11.11.5 Build Phase 432
11.11.6 Test Phase (Qualification Phase) 433
11.11.7 Operate Phase 433
11.11.8 Disposal or Refurbish 434
11.11.9 Development Programme 435
11.11.10 ‘V' Diagram 437
11.12 Extended Operations (ETOPS) 438
12 Avionics Technology 441
12.1 Introduction 441
12.2 The Nature of Microelectronic Devices 443
12.2.1 Processors 446
12.2.2 Memory Devices 446
12.2.3 Digital Data Buses 447
12.2.4 A 429 Data Bus 449
12.2.5 MIL-STD-1553B 451
12.2.6 ARINC 629 Data Bus 453
12.2.7 COTS Data Buses 456
12.3 Data Bus Integration of Aircraft Systems 460
12.3.1 Experimental Aircraft Programme (EAP) 460
12.3.2 Airbus A330/340 461
12.3.3 Boeing 777 462
12.3.4 Regional Aircraft/Business Jets 463
12.3.5 A380 Avionics Architecture 464
12.3.6 Boeing 787 Avionics Architecture 467
12.3.7 COTS Data Buses – IEEE 1394 468
12.4 Fibre Optic Buses 469
12.5 Avionics Packaging Standards 470
12.5.1 Air Transport Radio (ATR) 470
12.5.2 Modular Concept Unit (MCU) 470
12.6 Typical LRU Architecture 471
12.7 Integrated Modular Avionics 473
13 Environmental Conditions 477
13.1 Introduction 477
13.2 Environmental Factors 479
13.2.1 Altitude 479
13.2.2 Temperature 480
13.2.3 Contamination by Fluids 482
13.2.4 Solar Radiation 483
13.2.5 Rain, Humidity, Moisture 484
13.2.6 Fungus 485
13.2.7 Salt Fog/Salt Mist 485
13.2.8 Sand and Dust 486
xvi Contents
13.2.9 Explosive Atmosphere 486
13.2.10 Acceleration 487
13.2.11 Immersion 487
13.2.12 Vibration 488
13.2.13 Acoustic Noise 488
13.2.14 Shock 489
13.2.15 Pyroshock 490
13.2.16 Acidic Atmosphere 490
13.2.17 Temperature, Humidity, Vibration, Altitude 490
13.2.18 Icing/Freezing Rain 491
13.2.19 Vibro-Acoustic, Temperature 491
13.2.20 RF Radiation 491
13.2.21 Lightning 492
13.2.22 Nuclear, Biological and Chemical 493
13.3 Testing and Validation Process 493
Index 499
专业书籍
下载地址:(回复后可见)
|