CHNJET喷气俱乐部

 找回密码
 立即注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 9101|回复: 10

《Modeling and Control of Fuel Cells: Distributed Generation Applications 》

[复制链接]
发表于 2017-7-18 10:52:08 | 显示全部楼层 |阅读模式
欢迎大家在B站关注CHNJET

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?立即注册

x
《Modeling and Control of Fuel Cells: Distributed Generation Applications》
燃料电池的建模与控制:分布式发电应用
作者:M. Hashem Nehrir
Caisheng Wang
出版社:Wiley
出版时间:2009年

《Modeling and Control of Fuel Cells: Distributed Generation Applications》

《Modeling and Control of Fuel Cells: Distributed Generation Applications》

《Modeling and Control of Fuel Cells: Distributed Generation Applications》

《Modeling and Control of Fuel Cells: Distributed Generation Applications》

《Modeling and Control of Fuel Cells: Distributed Generation Applications》

《Modeling and Control of Fuel Cells: Distributed Generation Applications》

《Modeling and Control of Fuel Cells: Distributed Generation Applications》

《Modeling and Control of Fuel Cells: Distributed Generation Applications》


目录
Preface
Acknowledgments
1 Introduction
1.1 Background: A Brief History of U.S. Electric Utility
xiii
xvii
1
Formation and Restructuring I
1.2 Power Deregulation and Distributed Generation 3
DG Types 7
Fuel Cell DG 9
The Hydrogen Economy 13
1.5.1 Introduction 13
1.5.2 Challenges of Transition to a
Hydrogen Economy 14
1.5.3 Hydrogen Production 15
1.5.3.1 Hydrogen Production by Reforming
Natural Gas 16
15.3.2
1.5.3.3
1.5.3.4
Hydrogen Production from Coal
Hydrogen Production from
Nuclear Energy
Hydrogen Production
by Water Electrolysis
17
18
19
v
vi CONTENTS
1.5.3.5 Solar Energy to Hydrogen 19
1.5.3.6 Wind Energy to Hydrogen 20
1.5.3.7 Biomass Energy to Hydrogen 20
1.5.4 Hydrogen Storage and Distribution 21
1.5.5 Department of Energy Hydrogen-Related
Activities 22
1.5.5.1 Hydrogen Production 22
1.5.5.2 Hydrogen Basic Research 23
1.5.5.3 Hydrogen Delivery 23
1.5.5.4 Hydrogen Storage 24
1.5.5.5 Hydrogen Energy Conversion
(Fuel Cells) 24
1.5.6 The Role of This Book 26
References 27
2 Principles of Operation of Fuel Cells 29
2.1 Introduction 29
2.2 Chemical and Thermal Energy of an Element 30
2.3 Fundamentals of Thermodynamics 31
2.3.1 The First Law of Thermodynamics 31
2.3.2 The Second Law of Thermodynamics 32
2.4 Fundamentals of Electrochemical Processes 34
The Gibbs Free Energy 34
2.5 Energy Balance in Chemical Reactions 35
2.6 The Nernst Equation 37
2.7 Fuel Cell Basics 38
2.8 Types of Fuel Cells 40
2.9 Fuel Cell Equivalent Circuit 53
2.10 Capacitance of Double-Layer Charge Effect 54
2.11 Summary 55
References 56
3 Dynamic Modeling and Simulation of PEM
Fuel Cells 57
3.1 Introduction: Need for Fuel Cell Dynamic Models 57
3.2 Nomenclature (PEMFC) 58
3.3 PEMFC Dynamic Model Development 60
3.3.1 Gas Diffusion at the Electrodes 62
3.3.2 Material Conservation 64
3.3.3 PEMFC Output Voltage 65
4
CONTENTS vii
3.3.4 PEMFC Voltage Drops 67
3.3.5 Thermodynamic Energy Balance for PEMFC 69
3.4 PEMFC Model Structure 71
3.5 Equivalent Electrical Circuit Model of PEMFC 72
3.6 PEMFC Model Validation 77
References 83
Dynamic Modeling and Simulation of Solid
Oxide Fuel Cells 85
4.1 Introduction 85
4.2 Nomenclature (SOFC) 86
4.3 SOFC Dynamic Model Development 88
4.3.1 Effective Partial Pressures 89
4.3.2 Material Conservation 92
4.3.3 SOFC Output Voltage 94
4.3.3.1 Activation Voltage Drop 95
4.3.4 Thermodynamic Energy Balance
for Tubular SOFC 98
4.3.4.1 The Fuel Cell Tube 99
4.3.4.2 Fuel 100
4.3.4.3 Air Between Cell and Air Supply
Tube (AST) 100
4.3.4.4 Air Supply Tube 101
4.3.4.5 Air in AST 101
4.4 SOFC Dynamic Model Structure 102
4.5 SOFC Model Response-Constant Fuel
Flow Operation 103
4.5.1 Steady-State Characteristics 103
4.5.2 Dynamic Response 106
4.5.2.1 Dynamics Due to the Double-Layer
Charge Effect 106
4.5.2.2 Dynamics Due to the Effect
of Pressure 108
4.5.2.3 Dynamics Due to the Effect of
Temperature 109
4.6 SOFC Model Response-Constant Fuel
Utilization Operation 111
4.6.1 Steady-State Characteristics 112
4.6.2 Dynamic Response 113
References 114
viii CONTENTS
5 Principles of Operation and Modeling
of Electrolyzers 116
5.1 Principle of Operation of Electrolyzers 116
5.2 Dynamic Modeling of Electrolyzers 117
5.2.1 Electrolyzer Steady-State (V-I)
Characteristics 119
5.2.2 Modeling Hydrogen Production Rate 120
5.2.3 Electrolyzer Thermal Model 122
5.3 Electrolyzer Model Implementation 123
References 125
6 Power Electronic Interfacing Circuits
for Fuel Cell Applications 1 26
6.1 Introduction 126
6.2 Overview of Basic Power Electronic Switches 128
6.2.1 Diode 128
6.2.2 Thyristor 129
6.2.3 Bipolar Junction Transistor (BJT) 130
6.2.4 Metal-Oxide Semiconductor Field Effect
Transistor (MOSFET) 131
6.2.5 Gate Tum-Off Thyristor (GTO) 132
6.2.6 Insulated Gate Bipolar Transistor (IGBT) 133
6.2.7 MOS-Controlled Thyristor (MCT) 133
6.3 ac/dc Rectifiers 135
6.3.1 Circuit Topologies 135
6.3.2 Simplified Model for Three-Phase
Controllable Rectifiers 138
6.4 dc to dc Converters 140
6.4.1 Boost Converters 141
6.4.1.1 Circuit Topology 141
6.4.1.2 Small-Signal State-Space Model 142
6.4.1.3 Average Model for Long-Time
Simulation 144
6.4.2 Buck Converters 146
6.4.2.1 Circuit Topology 146
6.4.2.2 Small-Signal State-Space Model
for Buck dc/dc Converters 148
6.4.2.3 Average Model for Long-Time
Simulation 149
7
CONTENTS ix
6.5 Three-Phase dc/ac Inverters 150
6.5.1 Circuit Topology 150
6.5.2 State-Space Model 153
6.5.3 abc/dq Transformation 156
6.5.4 dq Representation of the State-Space Model 157
6.5.5 Ideal Model for Three-Phase V SI 159
References 162
Control of Grid-Connected Fuel Cell Power
Generation Systems 163
7.1 Introduction 163
7.2 Grid-Connected System Configuration 164
7.2.1 PEMFC Unit Configuration 166
7.2.2 SOFC Unit Configuration 166
7.3 Controller Designs for dc/dc Converters
and the Inverter 168
7.3.1 Circuit and Controller Design for the
Boost dc/dc Converter 168
7.3.1.1 Circuit Design 168
7.3.l.2 Controller Design 170
7.3.2 Controller Design for the Three-Phase V SI 173
7.3.2.1 Current Control Loop 174
7.3.2.2 Voltage Control Loop 176
7.3.2.3 Overall Power Control System
for the Inverter 181
7.4 Simulation Results 182
7.4.1 Desired P and Q Delivered to the
Grid-Heavy Loading 182
7.4.1.1 PEMFC DG 182
7.4.l.2 SOFC DG 184
7.4.2 Desired P Delivered to the Grid, Q Consumed
from the Grid: Light Loading 186
7.4.2.1 PEMFC DG 187
7.4.2.2 SOFC DG 188
7.4.3 Load-Following Analysis for Fuel Cells 189
7.4.3.1 Fixed Power Supply from the Grid 189
7.4.3.2 Fixed Power Supply from the FCDG 191
7.4.4 Fault Analysis 192
7.5 Summary 195
References 195
X CONTENTS
8 Control of Stand-Alone Fuel Cell Power
Generation Systems 198
8.1 Introduction 198
8.2 System Description and Control Strategy 199
8.3 Load Transient Mitigation Control 201
8.3.1 Circuit Model for Lead-Acid Batteries 202
8.3.2 Battery ChargeIDischarge Controller 203
8.3.3 Filter Design 204
8.4 Simulation Results 205
8.4.1 The Load Transients 206
8.4.1.1 The dc Load Transients 206
8.4.1.2 The ac Load Transients 207
8.4.2 Load Transient Mitigation 209
8.4.2.1 PEMFC System 209
8.4.2.2 SOFC System 212
8.4.3 Battery ChargeIDischarge Controller 214
8.5 Summary 216
References 216
9 Hybrid Fuel Cell Based Energy
System Case Studies 219
9.1 Introduction 219
9.2 Hybrid Electronically Interfaced Systems 221
9.2.1 The dc-Coupled Systems 222
9.2.2 The ac-Coupled Systems 224
9.2.3 Stand-Alone Versus Grid-Connected Systems 225
9.3 Fuel Cells in Hybrid Combined Heat
and Power Operation Mode 226
9.4 Case Study I: A Hybrid Stand-Alone
Wind-PV-FC System 227
9.4.1 System Configuration 227
9.4.2 System Unit Sizing 230
9.4.3 System Component Characteristics 232
9.4.3.1 The Wind Energy Conversion
System Model 233
9.4.3.2 The Photovoltaic Array Model 234
9.4.3.3 The Fuel Cell and Electrolyzer Models 235
9.4.4 System Control 236
9.4.4.1 The Overall Power Management
Strategy 236
9.4.4.2 The Wind-Turbine Pitch Angle
CONTENTS xi
Controller 236
9.4.4.3 The PV Maximum Power Point
Tracking (MPPT) Control 238
9.4.4.4 The ac Bus Voltage Regulator 240
9.4.4.5 The Electrolyzer Controller 241
9.4.5 Simulation Results 241
9.5 Case Study II: SOFC Efficiency Evaluation in Hybrid
Operation Mode 247
9.5.1 Thermodynamic Laws and SOFC Efficiency 248
9.5.2 Hydrogen Fuel Heating Values 253
9.5.3 SOFC Electrical Efficiency 255
9.5.4 SOFC Efficiency in Hybrid CHP
Operation Mode 256
9.6 Summary 259
References 260
10 Present Challenges and Future of Fuel Cells 265
10.1 Introduction 265
10.2 Fuel Cell System Operations 266
10.2.1 Fuel Processor 266
10.2.2 Fuel Cell Stack 267
10.2.3 Power Conditioner System 269
10.2.4 Balance of Plant (BOP) Systems 272
10.3 Present Challenges and Opportunities 272
10.3.1 Cost 272
10.3.2 Fuel and Fuel Infrastructure 273
10.3.3 Materials and Manufacturing 274
10.4 U.S. Fuel Cell R&D Programs 275
10.4.1 DOE's SOFC-Related Programs 276
10.5 Future of Fuel Cells: A Summary and
Authors Opinions 278
References 279
Appendix A Instruction for Running the PEMFC and SOFC
Models and Their Distributed Generation
Index
Application Models 2 82
291

专业书籍
下载地址:(回复后可见)
游客,如果您要查看本帖隐藏内容请回复
楼主热帖
回复

使用道具 举报

发表于 2017-10-30 21:07:31 来自手机 | 显示全部楼层
谢谢分享。
来自: 微社区
回复

使用道具 举报

发表于 2018-7-1 12:49:57 | 显示全部楼层
好好学习,天天向上
回复 支持 反对

使用道具 举报

发表于 2018-8-6 10:30:45 | 显示全部楼层
好书
回复

使用道具 举报

发表于 2018-12-3 20:23:53 | 显示全部楼层
非常好!非常感谢!
回复 支持 反对

使用道具 举报

发表于 2020-5-22 16:56:36 | 显示全部楼层
楼主好人,一生平安
回复 支持 反对

使用道具 举报

发表于 2020-11-22 17:28:07 | 显示全部楼层
谢谢分享
回复

使用道具 举报

发表于 2021-9-7 19:22:06 | 显示全部楼层
学习雷锋
回复

使用道具 举报

发表于 2022-2-5 22:43:03 | 显示全部楼层
很好的书。
回复

使用道具 举报

发表于 2023-3-30 17:27:24 | 显示全部楼层
专业书籍,谢谢
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

sitemap|联系站长|版权说明|小黑屋|Archiver|手机版|CHNJET喷气俱乐部 ( 京ICP备15028347号-2 京公网安备 11011202000937号 )

GMT+8, 2025-5-2 04:34

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表