CHNJET喷气俱乐部

 找回密码
 立即注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 26185|回复: 31

《Fundamentals of Turbomachines》

[复制链接]
发表于 2017-7-11 10:48:08 | 显示全部楼层 |阅读模式
欢迎大家在B站关注CHNJET

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?立即注册

x
《Fundamentals of Turbomachines》
涡轮机原理
作者:Erik Dick
Department of Flow, Heat and Combustion
Mechanics
Ghent University
出版社:Springer
出版时间:2015年

《Fundamentals of Turbomachines》

《Fundamentals of Turbomachines》

《Fundamentals of Turbomachines》

《Fundamentals of Turbomachines》

《Fundamentals of Turbomachines》

《Fundamentals of Turbomachines》

《Fundamentals of Turbomachines》

《Fundamentals of Turbomachines》

《Fundamentals of Turbomachines》

《Fundamentals of Turbomachines》


目录
1 Working Principles  1
1.1 Definition of a Turbomachine  1
1.2 Examples of Axial Turbomachines  2
1.2.1 Axial Hydraulic Turbine  2
1.2.2 Axial Pump  4
1.3 Mean Line Analysis  5
1.4 Basic Laws for Stationary Duct Parts  7
1.4.1 Conservation of Mass  7
1.4.2 Conservation of Momentum  7
1.4.3 Conservation of Energy  9
1.4.4 Forms of Energy: Mechanical Energy and Head  10
1.4.5 Energy Dissipation: Head Loss  12
1.5 Basic Laws for Rotating Duct Parts  14
1.5.1 Work and Energy Equations in a Rotating Frame
with Constant Angular Velocity  14
1.5.2 Moment of Momentum in the Absolute Frame: Rotor Work  16
1.5.3 Moment of Momentum in the Relative Frame:
Forces Intervening in the Rotor Work  21
1.5.4 Energy Component Changes Caused By the Rotor Work  23
1.5.5 Rotor Work in the Mean Line Representation of the Flow  24
1.6 Energy Analysis of Turbomachines  25
1.6.1 Mechanical Efficiency and Internal Efficiency  25
1.6.2 Energy Analysis of an Axial Hydraulic Turbine  26
1.6.3 Energy Analysis of an Axial Pump  30
1.7 Examples of Radial Turbomachines  33
1.8 Performance Characteristics  36
1.9 Exercises  40
References  46
2 Basic Components  47
2.1 Aerofoils  47
2.1.1 Force Generation  47
2.1.2 Performance Parameters  49
xviii Contents
2.1.3 Pressure Distribution  51
2.1.4 Boundary Layer Separation  52
2.1.5 Loss Mechanism Associated to Friction: Energy Dissipation 55
2.1.6 Profile Shapes  58
2.1.7 Blade Rows with Low Solidity  59
2.2 Linear Cascades  60
2.2.1 Relation with the Real Machine  60
2.2.2 Cascade Geometry  61
2.2.3 Flow in Lossless Cascades: Force Components  62
2.2.4 Significance of Circulation  65
2.2.5 Flow in Lossless Cascades: Work  67
2.2.6 Flow in Cascades with Loss: Force Components  68
2.2.7 Flow in Cascades with Loss: Energy Dissipation
and Work by Drag Force  70
2.2.8 The Zweifel Tangential Force Coefficient  72
2.2.9 The Lieblein Diffusion Factor  74
2.2.10 Performance Parameters of Axial Cascades  75
2.3 Channels  75
2.3.1 Straight Channels  75
2.3.2 Bends  77
2.4 Diffusers  79
2.4.1 Dump Diffusers  79
2.4.2 Inlet Flow Distortion  79
2.4.3 Flow Separation  81
2.4.4 Flow Improvement  81
2.4.5 Representation of Diffuser Performance  82
2.4.6 Equivalent Opening Angle  84
2.4.7 Diffusion in a Bend  85
2.5 Exercises  87
References  95
3 Fans  97
3.1 Fan Aplications and Fan Types  97
3.1.1 Fan Applications  97
3.1.2 Large Radial Fans  98
3.1.3 Small Radial Fans  99
3.1.4 Large Axial Fans  99
3.1.5 Small Axial Fans  100
3.1.6 Cross-Flow Fans  100
3.2 Idealised Mean Line Analysis of a Radial Fan  101
3.2.1 Idealised Flow Concept: Infinite Number of Blades  101
3.2.2 Degree of Reaction  102
3.2.3 Relation Between Rotor Blade Shape and Performance
Parameters  103
3.2.4 Performance Characteristics with Idealised Flow  105
Contents xix
3.3 Radial Fan Analysis for Lossless Two-Dimensional Flow
with Finite Number of Rotor Blades  106
3.3.1 Relative Vortex in Blade Channels  106
3.3.2 Velocity Difference over a Rotating Blade  107
3.3.3 Slip: Reduction of Rotor Work  112
3.3.4 Number of Blades and Solidity: Pfleiderer Moment
Coefficient  115
3.3.5 Number of Blades: Examples  118
3.4 Internal Losses with Radial Fans  120
3.4.1 Turning Loss at Rotor Entrance  120
3.4.2 Incidence Loss at Rotor Entrance  120
3.4.3 Displacement by Blade Thickness  122
3.4.4 Rotor Friction Loss and Rotor Diffusion Loss  123
3.4.5 Dump Diffusion Loss at Volute Entrance  123
3.4.6 Incidence Loss at Volute Entrance  125
3.4.7 Friction Loss Within the Volute  126
3.4.8 Diffusion at the Rotor Inlet  126
3.4.9 Flow separation at Rotor Inlet and Rotor Outlet  127
3.4.10 Applicability of the Loss Models  129
3.4.11 Optimisation of the Rotor Inlet of a Centrifugal Fan  129
3.4.12 Characteristics Taking Losses into Account  131
3.5 Overall Performance Evaluation  134
3.5.1 Mechanical Loss  134
3.5.2 Leakage Loss  135
3.5.3 Overall Efficiency with Power Receiving Machines  135
3.5.4 Overall Efficiency with Power Delivering Machines  136
3.6 Rotor Shape Choices with Radial Fans  136
3.7 Axial and Mixed-Flow Fans  140
3.7.1 Degree of Reaction with Axial Fans  140
3.7.2 Free Vortex and Non-Free Vortex Types  141
3.7.3 Axial Fan Characteristics; Adjustable Rotor Blades  143
3.7.4 Mixed-Flow Fans  144
3.8 Exercises  146
3.8.1 Centrifugal Pump (Idealised Flow)  146
3.8.2 Rotor of a Centrifugal Fan (Finite Number of Blades
and Internal Losses)  146
3.8.3 Number of Blades of a Rotor of a Centrifugal Fan  147
3.8.4 Volute of a Centrifugal Fan  147
3.8.5 Leakage Flow Rate with Centrifugal Fan  147
3.8.6 Centrifugal Pump (Finite Number of Blades and
Internal Losses)  148
3.8.7 Axial Fan (Idealised Flow): Analysis on Average
Diameter  148
3.8.8 Axial Fan (Idealised Flow): Free Vortex and Non-
Free Vortex  149
xx Contents
3.8.9 Inlet Guide Vane with a Centrifugal Fan  149
3.8.10 Change of Rotational Speed with Centrifugal and
Axial Fans  149
3.8.11 Two-Stage Axial Fan  150
3.8.12 Axial Turbine  151
References  151
4 Compressible Fluids  153
4.1 Basic Laws  153
4.2 Compressibility and Velocity of Sound  156
4.3 Compressibility Effect on the Velocity-Pressure Relation  158
4.4 Shape of a Nozzle  160
4.5 Nozzle with Initial Velocity  162
4.6 Nozzle with Losses: Infinitesimal Efficiency  163
4.7 Isentropic and Polytropic Efficiencies  167
4.8 Exercises  171
References  174
5 Performance Measurement  175
5.1 Pressure Measurement  175
5.1.1 The Metal Manometer  175
5.1.2 The Pressure Transducer  175
5.1.3 The Digital Manometer  176
5.1.4 Calibration of Pressure Meters  177
5.2 Temperature Measurement  177
5.2.1 The Glass Thermometer  177
5.2.2 The Temperature Transducer  177
5.2.3 The Digital Thermometer  178
5.3 Flow Rate Measurement  178
5.3.1 Reservoir  178
5.3.2 Flow Over a Weir  178
5.3.3 Pressure Drop Devices  179
5.3.4 Industrial Mass Flow Rate Meters  180
5.3.5 Positioning of Flow Rate Meters in Ducts  180
5.4 Torque Measurement  181
5.4.1 Swinging Suspended Motor or Brake  181
5.4.2 Calibrated Motor  181
5.4.3 The Torque Transducer  181
5.5 Rotational Speed Measurement  182
5.5.1 Pulse Counters  182
5.5.2 The Speed Transducer  182
5.5.3 Electric Tachometer  182
5.6 Laboratory Test of a Pelton Turbine  182
5.6.1 Test Rig  182
5.6.2 Measurements  183
Contents xxi
5.6.3 Measurement Procedure  183
5.6.4 Calculations  184
5.6.5 Measurement Example  184
5.7 Laboratory Test of a Centrifugal Fan  184
5.7.1 Test Rig  184
5.7.2 Measurements  187
5.7.3 Measurement Procedure  187
5.7.4 Calculations  188
5.7.5 Measurement Example  188
5.8 Laboratory Test of a Centrifugal Pump  189
5.8.1 Test Rig  189
5.8.2 Measurements  190
5.8.3 Measurement Procedure  190
5.8.4 Calculations  191
5.8.5 Measurement Example  192
6 Steam Turbines  193
6.1 Applications of Steam Turbines  193
6.2 Working Principles of Steam Turbines  195
6.3 The Steam Cycle  199
6.4 The Single Impulse Stage or Laval Stage  200
6.4.1 Velocity Triangles  200
6.4.2 Work and Energy Relations  201
6.4.3 Stage Efficiency Definitions  204
6.4.4 Blade Profile Shape  205
6.4.5 Loss Representation  208
6.4.6 Optimisation of Total-to-Static Efficiency  209
6.5 The Pressure-Compounded Impulse Turbine
or Rateau Turbine  212
6.5.1 Principle  212
6.5.2 Efficiency  213
6.6 The Velocity-Compounded Impulse Turbine or Curtis Turbine  214
6.7 The Reaction Turbine  217
6.7.1 Degree of Reaction  217
6.7.2 Efficiency  218
6.7.3 Axial Inlet and Outlet  222
6.8 Steam Turbine Construction Forms  224
6.8.1 Large Steam Turbines for Power Stations  224
6.8.2 Industrial Steam Turbines  229
6.9 Blade Shaping  231
6.9.1 HP and IP Blades  231
6.9.2 LP Blades  233
6.10 Exercises  236
References  246
xxii Contents
7 Dynamic Similitude  247
7.1 Principles of Dynamic Similitude  247
7.1.1 Definition of Dynamic Similitude  247
7.1.2 Dimensionless Parameter Groups  248
7.1.3 Similitude Conditions  248
7.1.4 Purpose of Similitude Analysis  250
7.1.5 Dimensional Analysis  251
7.1.6 Independent and Dependent Parameter Groups  252
7.1.7 Dimensionless Parameter Groups in Turbomachines
with a Constant Density Fluid  252
7.1.8 Strong and Weak Similitude Conditions  254
7.2 Characteristic Numbers of Turbomachines  254
7.2.1 Definition of a Characteristic Number  254
7.2.2 Specific Speed and Specific Diameter  255
7.2.3 Relation Between Characteristic Numbers
and Machine Shape  257
7.2.4 Design Diagrams  259
7.2.5 Shape of Characteristic Curves  261
7.2.6 Power Specific Speed  262
7.3 Application Example of Similitude: Variable Rotational
Speed with a Pump  263
7.4 Imperfect Similitude  266
7.4.1 Effect of Reynolds Number with the Same Fluid  266
7.4.2 Effect of Relative Roughness  267
7.4.3 Effect of Viscosity  268
7.4.4 Rotor Diameter Reduction: Impeller Trimming  270
7.4.5 Reduced Scale Models  271
7.5 Series and Parallel Connection  272
7.5.1 Parallel Connection of Fans  272
7.5.2 Parallel Connection of Pumps  273
7.5.3 Series Connection of Fans  274
7.6 Turbomachine Design Example: Centrifugal Fan  276
7.7 Exercises  279
References  282
8 Pumps  alic283
8.1 Cavitation  283
8.1.1 Cavitation Phenomenon and Cavitation Consequences  283
8.1.2 Types of Cavitation  284
8.1.3 Cavitation Assessment: Cavitation Number and
Required Net Positive Suction Height  286
8.1.4 Optimisation of the Inlet of a Centrifugal Pump Rotor  289
8.1.5 Net Positive Suction Head of the Installation  291
8.1.6 Increasing the Acceptable Suction Height  292
Contents xxiii
8.2 Priming of Pumps: Self-Priming Types  293
8.2.1 Side Channel Pump  293
8.2.2 Peripheral Pump (regenerative pump)  295
8.2.3 Self-Priming Centrifugal Pump  296
8.2.4 Jet Pump  297
8.3 Unstable Operation  297
8.4 Component Shaping  299
8.4.1 Simply and Doubly Curved Blades in Radial Rotors  299
8.4.2 Mixed-Flow and Axial Pumps  300
8.4.3 Pump Inlet  300
8.4.4 Pump Outlet  301
8.4.5 Vaneless Diffuser Rings  301
8.4.6 Vaned Diffuser Rings  302
8.4.7 Volute  303
8.4.8 Return Channels  305
8.5 Internal Parallel and Series Connection Of Rotors  305
8.5.1 Reason for Internal Parallel or Series Connection  305
8.5.2 Internal Parallel Connection of Rotors  306
8.5.3 Internal Series Connection of Rotors: Multistage Pumps  306
8.6 Constructional Aspects  307
8.6.1 Rotor  307
8.6.2 Stator  307
8.6.3 Shaft Sealing  307
8.6.4 Bearings  309
8.6.5 Axial Force Balancing with Single-Stage Pumps  309
8.6.6 Axial Force Balancing with Multistage Pumps  310
8.6.7 Wear Rings  311
8.7 Special Pumps  311
8.7.1 Borehole Pumps  312
8.7.2 High-Pressure Pumps  312
8.7.3 Sealless Pumps: Circulation Pumps, Chemical Pumps  312
8.7.4 Slurry Pumps  313
8.7.5 Pumping of Solid Materials  314
8.7.6 Vertical Submerged Pumps  314
8.7.7 Partial Emission Pumps  315
8.7.8 Pumps for Viscous Fluids  315
8.8 Exercises  316
8.8.1 Looking up Pump Characteristics  316
8.8.2 Verification of an NPSH-Value  316
References  317
9 Hydraulic Turbines  319
9.1 Hydraulic Energy  319
9.2 Hydraulic Turbine Types  320
9.2.1 Large Turbines (> 10 MW)  320
9.2.2 Small Turbines (< 10 MW)  322
xxiv Contents
9.3 Pelton Turbines: Impulse Turbines  324
9.3.1 Performance Characteristics  324
9.3.2 Specific Speed  326
9.3.3 Determination of the Main Dimensions  328
9.3.4 Flow Rate Control and Over-Speed Protection  328
9.4 Francis and Kaplan Turbines: Reaction Turbines  329
9.4.1 Shape of the Velocity Triangles: Kinematic Parameters  329
9.4.2 Optimisation of the Velocity Triangles  330
9.4.3 Degree of Reaction and Speed Ratio  331
9.4.4 Velocity Triangles with Varying Degree of Reaction  332
9.4.5 Specific Speed and Meridional Shape of Francis Turbines  333
9.4.6 Flow Rate Control with Reaction Turbines  335
9.4.7 Examples (Figs. 9.16, 9.17)  337
9.5 Bulb and Tube Turbines  338
9.6 Reversible Pump-Turbines  340
9.7 Exercises  342
References  345
10 Wind Turbines  347
10.1 Wind Energy  347
10.2 Types of Wind Energy Conversion Systems  348
10.2.1 Drag Machines  348
10.2.2 High-Speed Horizontal-Axis Turbines  349
10.2.3 Technical Aspects of Horizontal-Axis Wind
Turbines for Electricity Generation  351
10.2.4 Low-Speed Horizontal-Axis Wind Turbines  355
10.2.5 Vertical-Axis Wind Turbines  356
10.3 Wind Turbine Performance Analysis  358
10.3.1 Momentum Analysis (Single Streamtube Analysis)  358
10.3.2 Multiple Streamtube Analysis  361
10.3.3 Blade Element Analysis  363
10.4 Adaptation to a Wind Regime  365
References  368
11 Power Gas Turbines  369
11.1 General Concept and Components  369
11.1.1 Definition of a Gas Turbine  369
11.1.2 Comparison with Other Thermal Engines  371
11.1.3 Example of a Power Gas Turbine  372
11.1.4 Compressor Part  374
11.1.5 Turbine Part  377
11.1.6 Combustion Chamber  381
11.2 Thermodynamic Modelling  384
11.2.1 Isentropic Efficiency with Adiabatic Compression
or Expansion  384
11.2.2 Reheat Effect  387
Contents xxv
11.2.3 Infinitesimal Efficiency; Polytropic Efficiency  389
11.2.4 Thermodynamic Properties of Air and Combustion Gas  392
11.2.5 Heat Capacity Representation  396
11.2.6 Cooled Expansion  396
11.2.7 Compression with Extraction  401
11.3 Performance of Simple-Cycle Power Gas Turbines  402
11.3.1 Idealised Simple Cycle  402
11.3.2 Simple Cycle with Component Efficiencies and
Different Heat Capacities of Air and Combustion Gas  403
11.3.3 Simple Cycle with Component Efficiencies, Cooling
and Variable Gas Properties  405
11.4 Performance of Power Gas Turbines with Enhanced Cycles  409
11.4.1 Compression with Intercooling  409
11.4.2 Expansion with Reheat  411
11.4.3 Recuperator  412
11.4.4 Combined Gas and Steam Cycles  413
11.4.5 Steam Injection  416
References  417
12 Thrust Gas Turbines  419
12.1 Thrust Generation  419
12.1.1 Screw or Propeller  419
12.1.2 Reactor or Jet Engine  423
12.1.3 Rocket  426
12.2 Overview of Aircraft Gas Turbine Engines  427
12.2.1 Turbojet  427
12.2.2 Turboprop and Turbo-Shaft  427
12.2.3 Bypass Turbojet  428
12.2.4 Turbofan  428
12.2.5 Prop-fan and Unducted Fan  429
12.2.6 Geared Turbofan  432
12.3 Performance Parameters of Aircraft Propulsion Systems  432
12.3.1 Specific Thrust  432
12.3.2 Dynamic Power  433
12.3.3 Gas Power and Dynamic Efficiency  433
12.3.4 Thermal Power, Thermodynamic Efficiency and
Thermal Efficiency  433
12.3.5 Propulsive Power and Propulsive Efficiency  434
12.3.6 Overall Efficiency  434
12.3.7 Rocket  435
12.3.8 Generalisation for Double-Flow Engines  435
12.3.9 Specific Fuel Consumption  437
12.4 Performance of the Gas Generator
and the Single-Jet Engine  438
12.4.1 Analysis with Loss-Free Components  439
12.4.2 Analysis with Component Losses  441
xxvi Contents
12.5 Performance of Double-Flow Engines  444
12.5.1 Unmixed Flows (Double-Jet Engine: Turbofan,
Turboprop)  444
12.5.2 Mixed Flows (Bypass Engine)  448
12.5.3 Intercooling and Recuperation  450
12.6 Technological Aspects of the Turbofan Engine  451
12.6.1 Discs and Shafts  451
12.6.2 Vanes and Blades  451
12.6.3 Combustion Chamber  452
12.6.4 Mixer and Thrust Reverser  454
12.7 Exercises  454
12.7.1 Single-Flow Jet Engine  454
12.7.2 Single-Flow Jet Engine with Post-Combustion  455
12.7.3 Turbofan with Separate Flows  456
12.7.4 Turbofan with Mixed Flows  456
12.7.5 Optimisation of Turbine Inlet Temperature with a
Turbofan Engine  456
12.7.6 Helicopter Rotor  456
12.7.7 Ramjet  457
References  457
13 Axial Compressors  459
13.1 Mean Line Analysis  459
13.1.1 Velocity Triangles  460
13.1.2 Fundamental Equations  461
13.1.3 Loss Representation  462
13.1.4 Loss Coefficients  465
13.1.5 Force Components  465
13.1.6 Diffusion Factor and Loss Correlations  466
13.1.7 Kinematic Parameters  470
13.1.8 Secondary Flow: Principle  471
13.1.9 Radial Variation of Flow: Principle  473
13.1.10 Optimisation of a Stage  474
13.1.11 Blade Shape  476
13.1.12 Attainable Pressure Ratio  478
13.2 Secondary Flow  478
13.2.1 Definition of Secondary Flow  478
13.2.2 Passage Vortex and Trailing Vortices  479
13.2.3 Corner Vortices  480
13.2.4 Horseshoe Vortex  480
13.2.5 Leakage Vortex and Scraping Vortex  480
13.2.6 Loss Assessment  481
13.3 Radial Flow Variation  481
13.3.1 S1-S2 Decomposition  481
13.3.2 Radial Equilibrium  482
13.3.3 Free Vortex Blades  483
Contents xxvii
13.3.4 Forcing of the Vortex Distribution  485
13.3.5 Effect of End Wall Boundary Layers  487
13.3.6 Three-dimensional Blade Design  488
13.4 Compressor Blade Profiles  491
13.4.1 Subsonic and Supercritical Cascades  491
13.4.2 Transonic Cascades  494
13.4.3 Supersonic Cascades and Transonic Cascades with
High Inlet Mach Number  496
13.5 Performance Characteristics and Operating Range  497
13.5.1 General Shape of a Characteristic Curve  497
13.5.2 Rotating Stall  498
13.5.3 Choking  499
13.5.4 Surge  501
13.5.5 Operating Range  502
13.6 Exercises  505
References  506
14 Radial Compressors  509
14.1 Construction Forms and Applications  509
14.1.1 Rotor Types  509
14.1.2 General Shape of a Radial Compressor  511
14.1.3 Comparison Between Radial and Axial Compressors  512
14.1.4 Examples of Radial Compressors  513
14.2 Kinematic Parameters  516
14.3 Pressure Ratio  519
14.4 Rotor Shape  521
14.4.1 Number of Blades  521
14.4.2 Inducer  523
14.5 Diffusers  525
14.5.1 Flow Non-homogeneity at Rotor Outlet  525
14.5.2 Mixing Zone  526
14.5.3 Vaneless Diffusers  527
14.5.4 Vaned Diffusers  527
14.6 Performance Characteristics  528
14.6.1 Flow Instability  528
14.6.2 Choking  528
14.6.3 Operating Characteristics and Operating Range  529
14.7 Exercises  531
14.7.1 Velocity Variation at Constant Radius in a Rotor  531
14.7.2 Variable Geometry  533
References  533
15 Axial and Radial Turbines for Gases  535
15.1 Axial Turbines  535
15.1.1 Kinematic Parameters  535
15.1.2 Radial Variation of Flow Parameters  541
xxviii Contents
15.1.3 Blade Profiles  542
15.1.4 Three-dimensional Blade Design  545
15.1.5 Vane and Blade Clocking  546
15.1.6 Operating Characteristic of Axial Turbines  546
15.2 Radial Turbines  549
15.2.1 Shape and Functioning  549
15.2.2 Kinematic Parameters  551
15.2.3 Operating Characteristic of Radial Turbines  553
15.2.4 Radial Turbine Applications  554
15.3 Dimensional Analysis with Compressible Fluids  554
15.3.1 Independent and Dependent Π-groups  554
15.3.2 Dimensionless Compressor and Turbine Characteristics  556
15.3.3 Corrected Quantities  556
15.4 Exercises  557
References  558
Index  561  

专业书籍
下载地址:(回复后可见)
游客,如果您要查看本帖隐藏内容请回复




楼主热帖
回复

使用道具 举报

发表于 2017-10-30 21:35:37 来自手机 | 显示全部楼层
谢谢分享。
来自: 微社区
回复

使用道具 举报

发表于 2017-11-8 11:02:23 | 显示全部楼层
感谢楼主
回复

使用道具 举报

发表于 2017-11-9 13:27:03 | 显示全部楼层
感谢分享
回复

使用道具 举报

发表于 2017-11-28 22:58:26 | 显示全部楼层
谢谢楼主 ,非常感谢
回复 支持 反对

使用道具 举报

发表于 2018-3-10 10:52:00 | 显示全部楼层
非常感谢,正好在写论文。
回复 支持 反对

使用道具 举报

发表于 2018-4-13 01:14:20 | 显示全部楼层
Fundamentals of Turbomachines
回复 支持 反对

使用道具 举报

发表于 2018-6-10 15:53:04 | 显示全部楼层
多谢楼主分享。
非常需要。
回复 支持 反对

使用道具 举报

发表于 2018-6-24 12:42:09 | 显示全部楼层
谢谢分享
回复

使用道具 举报

发表于 2018-7-22 10:40:02 | 显示全部楼层
感谢大神分享!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

sitemap|联系站长|版权说明|小黑屋|Archiver|手机版|CHNJET喷气俱乐部 ( 京ICP备15028347号-2 京公网安备 11011202000937号 )

GMT+8, 2024-11-28 02:37

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表