马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
《Fuel Cells, Engines and Hydrogen:An Exergy Approach》
燃料电池,发动机和氢气:一种有效的方法
作者:Frederick J. Barclay
C.Eng., C.Phys.,
F.I.Mech.E., F.I.E.E., F.Inst.P.
出版社:Wiley
出版时间:2006年
《Fuel Cells, Engines and Hydrogen:An Exergy Approach》
《Fuel Cells, Engines and Hydrogen:An Exergy Approach》
《Fuel Cells, Engines and Hydrogen:An Exergy Approach》
《Fuel Cells, Engines and Hydrogen:An Exergy Approach》
目录
29
1.1 Power Storage 30
1.2 Circulators 31
1.3 Incompleteness 31
1.4 The Hydrogen Mine 32
1.5 Coal Gasification 33
1.6 SOFCs 34
1.7 MCFCs 35
1.8 The PEFC 37
1.9 Engines 38
2 Regenerative Fuel Cells or Redox Flow Batteries 41
2.1 Introduction to the Regenesys System 41
2.2 History and Patents 43
2.3 Regenesys Technologies Ltd; Power Storage 44
2.4 Elementary Chemistry 44
2.5 Modus Operandi of Regenesys 46
2.6 Some Construction Details 48
2.7 Ion and Electron Transfer 48
2.8 Power Storage Applications 49
2.9 Initial Operating Experience 49
2.10 Electrical Equipment 50
2.11 Remarks 50
2.12 Conclusions 51
viii CONTENTS
3 Irreversible Thermodynamics 53
3.1 Cells and Electrolysers with and without Circulators 53
3.2 Irreversibility – An Introduction via Joule’s
Experiment 54
3.3 PEFC Irreversibility 56
3.4 Bacon’s Fuel Cell; Avoidance of Irreversibility 58
3.5 Fuel Cell Engineering 58
3.6 Irreversibility in Calculation Routes 58
3.7 Juggling with Irreversibilities 59
3.8 Air-Breathing Fuel Cells – Irreversibilities 60
3.9 Liquid Electrolytes at the Electrode, ‘Ice’ Films,
Marangoni Forces and Diffusion Irreversibilities 62
3.10 Overvoltage – An Electrical Irreversibility 63
3.11 Biconductor Layers at the Electrode/Electrolyte
Interface 64
3.12 IR Drop 65
3.13 Remarks 65
4 Solid Oxide Fuel Cells (SOFCs) 67
4.1 Introduction 67
4.1.1 The SOFC 67
4.1.2 Electrolytes 69
4.1.3 Electrolyte Thickness 69
4.1.4 Cell Performance 69
4.1.5 Competitive Cells 70
4.1.6 Oxygen Ion Concentration 70
4.1.7 Unused Fuel 71
4.1.8 SOFC Internal Process 71
4.1.9 SOFC Preheating for Start-Up 72
4.1.10 SOFC Manoeuvrability 72
4.1.11 Direct Hydrocarbon Oxidation 73
4.2 Siemens Westinghouse 74
4.2.1 Siemens – SOFC Integration with
Gas Turbines 75
4.3 Rolls-Royce 76
4.4 NGK Insulators 78
4.5 Mitsubishi Materials Corporation (MMTL) 78
4.6 Imperial College London and Ceres Power Ltd 79
4.7 Ceramic Fuel Cells Ltd, Australia 80
4.8 Forschungs Zentrum Julich (FZJ) 81
4.9 Global Thermoelectric 82
CONTENTS ix
4.10 Allied Signal 82
4.11 Acumentrics 83
4.12 Adelan 84
4.13 Sulzer Hexis 84
4.14 ECN/INDEC Petten, the Netherlands 84
4.15 Remarks 89
5 Molten Carbonate Fuel Cells (MCFCs) 91
5.1 Introduction to the MCFC 91
5.1.1 MCFCs of FCE and MTU 92
5.1.2 Detailed Fuel Cell Description 96
5.1.3 Matrix Initiation 96
5.1.4 Matrix and Cathode Deterioration 96
5.1.5 Performance of Complete Cells 97
5.1.6 Bipolar Plates 97
5.1.7 Stacks 97
5.1.8 Gas Turbine Integration with an MCFC 98
5.1.9 Nickel Oxide Deposition at the Cathode at
High Pressure 100
5.1.10 Nickel Behaviour, Short-Circuiting 100
5.1.11 MCFC Integration with Coal Gasification 100
5.2 MCFC Status 101
5.3 Remarks 102
6 Polymer Electrolyte and Direct Methanol Fuel Cells 103
6.1 Introduction 103
6.1.1 Ballard Power Systems 103
6.1.2 Ballard History 104
6.1.3 Ballard Status 105
6.1.4 Ballard Stacks 105
6.1.5 Flexible Graphite and Ballard 105
6.1.6 Ballard MEAs 108
6.1.7 Nafion and Alternatives 109
6.1.8 Alternative Flow Plate Materials Used by
Competitors 110
6.1.9 Ballard Operating Experience 111
6.2 Electrocatalysis in the SPFC 112
6.3 Cathode Voltage Losses in the PEFC 113
6.4 The PEFC Hydrogen Economy in Iceland 114
6.5 Fuel Supply 114
6.6 DMFCS 114
x CONTENTS
6.7 Tokyo Gas Company, Desulphuriser 117
6.8 Remarks 117
7 Fuel Cell Economics and Prognosis 119
7.1 Opening Remarks 119
7.2 Fuel Cell Economics – Selected Summaries 120
7.3 Non-Fuel-Cell Motor Vehicle Economics 121
7.4 Price Waterhouse Fuel Cell Industry Survey 122
7.5 Remarks 123
Appendix A Equilibrium Thermodynamics of Perfect Fuel
Cells 125
A.1 Thermodynamic Preamble to the Fuel Cell
Equilibrium Diagram 126
A.2 Utilisation of Equilibrium Diagram for Calculation
of Chemical Exergy 136
A.3 Chemical Exergy of Methane and Related
High-Efficiency Hydrogen Production 150
A.4 Elaboration of Figures A.4 and A.5, the Equilibrium
Methane Oxidation Routes 165
A.5 Practical Power Production for the Future 166
Appendix B Patent Search Examples 171
Appendix C List of Web Sites 173
Bibliography 177
Index 185
专业书籍
下载地址:(回复后可见)
|