马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
《Transport Phenomena in Fuel Cells》
燃料电池中的输运现象
编辑:
B. Sundén
Lund Institute of Technology, Sweden
M. Faghri
University of Rhode Island, USA
出版社:WIT
出版时间:2005年
《Transport Phenomena in Fuel Cells》
《Transport Phenomena in Fuel Cells》
《Transport Phenomena in Fuel Cells》
《Transport Phenomena in Fuel Cells》
目录
Preface xv
Chapter 1:
Multiple transport processes in solid oxide fuel cells 1
P.-W. Li, L. Schaefer & M.K. Chyu
1 Introduction......................................................................................... 1
2 Thermodynamic and electrochemical fundamentals for
solid oxide fuel cells ........................................................................... 3
2.1 Operation with hydrogen fuel ..................................................... 4
2.2 Operation with methane through internal reforming and
shift reactions.............................................................................. 8
3 Electrical potential losses .................................................................... 11
3.1 Activation polarization................................................................ 12
3.2 Ohmic loss ................................................................................. 14
3.3 Mass transport and concentration polarization ........................... 18
4 Computer modeling of a tubular SOFC............................................... 19
4.1 Outline of a computation domain................................................ 21
4.2 Governing equations and boundary conditions ........................... 22
4.3 Numerical computation............................................................... 26
4.4 Typical results from numerical computation for tubular SOFCs.. 27
4.4.1 The SOFC terminal voltage ............................................. 27
4.4.2 Cell temperature distribution ........................................... 30
4.4.3 Flow, temperature and concentration fields ..................... 31
5 Concluding remarks ............................................................................ 34
Chapter 2:
Numerical models for planar solid oxide fuel cells 43
S.B. Beale
1 Introduction......................................................................................... 44
1.1 History and types of solid oxide fuel cell ................................... 44
1.2 Survey of modeling techniques................................................... 45
1.3 Thermodynamics of solid oxide fuel cells................................... 46
1.4 Cell voltage and current .............................................................. 49
1.5 Activation losses ......................................................................... 52
1.6 Diffusion losses........................................................................... 54
1.7 Basic computational algorithm................................................... 57
2 Computer schemes .............................................................................. 58
2.1 General scalar equation............................................................... 59
2.2 Continuity ................................................................................... 60
2.3 Momentum ................................................................................. 60
2.4 Heat transfer................................................................................ 62
2.5 Mass transfer............................................................................... 64
2.6 Numerical integration schemes ................................................... 64
2.7 Iterative procedure...................................................................... 65
2.8 Additional chemistry and electrochemistry................................. 66
2.9 Porous media flow ...................................................................... 67
2.10 Current and voltage distribution.................................................. 68
2.11 Advanced diffusion models ........................................................ 70
2.12 Thermal radiation........................................................................ 71
3 Stack models ....................................................................................... 73
4 Closure................................................................................................ 75
Chapter 3:
Electrochemical and thermo-fluid modeling of a tubular solid oxide
fuel cell with accompanying indirect internal fuel reforming 83
K. Suzuki, H. Iwai & T. Nishino
1 Introduction......................................................................................... 84
2 General remarks on the mechanism of IIR-T-SOFC........................... 86
2.1 Tubular cell................................................................................. 86
2.2 Internal reforming process .......................................................... 88
2.3 Electrochemical process.............................................................. 88
2.4 Purpose and key points of the analysis........................................ 90
3 Numerical modeling............................................................................ 91
3.1 Computational domain and general assumptions for
heat and mass transfer ................................................................ 91
3.2 Model for electrochemical reactions ........................................... 93
3.3 Model for internal fuel reforming ............................................... 95
3.4 Governing equations of velocity, temperature and
concentration fields and boundary conditions............................. 95
3.5 Discretization scheme................................................................. 98
3.6 Equations for electric potential and electric circuit .................... 101
3.7 Mass production or consumption rate of each chemical
species through electrochemical and reforming reactions............. 102
3.8 Model for thermodynamic heat generation rates......................... 103
3.9 Ohmic heat generation................................................................ 104
3.10 Radiation model.......................................................................... 104
3.11 Overall picture of the model ....................................................... 107
4 Results and discussion......................................................................... 108
4.1 Results for a cathode-supported tubular SOFC
without accompanying indirect internal reforming
[16,43,44].................................................................................. 108
4.2 Results for the Base case with accompanying indirect
internal reforming ....................................................................... 113
4.2.1 Thermal and concentration fields..................................... 115
4.2.2 Electric potential and current fields ................................. 116
4.2.3 Power generation characteristics...................................... 119
4.3 Strategies for the ideal thermal field ........................................... 121
4.3.1 Effect of gas inlet temperature ......................................... 121
4.3.2 Effect of air flow rate....................................................... 123
4.3.3 Effect of density distribution of catalyst ......................... 123
5 Conclusions......................................................................................... 125
Chapter 4:
On heat and mass transfer phenomena in PEMFC and SOFC and
modeling approaches 133
J. Yuan, M. Faghri & B. Sundén
1 Introduction......................................................................................... 133
2 Fuel cell modeling development......................................................... 135
2.1 Basics of SOFCs and PEMFCs................................................... 135
2.2 Modeling development............................................................... 137
2.2.1 Modeling approaches....................................................... 137
2.2.2 Various existing models................................................... 138
3 Main processes in SOFCs and PEMFCs ............................................. 141
3.1 Gas transport............................................................................... 142
3.2 Electrochemical reactions ........................................................... 142
3.3 Heat transfer ............................................................................... 143
3.4 Various transport processes in the electrodes
(porous layers)............................................................................ 143
3.5 Other processes appearing in fuel cell components..................... 144
4 Processes and issues in SOFC and PEMFC ........................................ 144
4.1 Water management in PEMFCs .................................................. 144
4.2 Fuel reforming issues in SOFC................................................... 145
5 Modeling methodologies for transport processes in
SOFC and PEMFC.............................................................................. 146
5.1 General considerations................................................................ 146
5.2 Assumptions................................................................................ 147
5.3 Governing equations ................................................................... 147
5.4 Boundary and interfacial conditions............................................ 149
5.5 Additional equations ................................................................... 150
5.6 Solution methodology................................................................. 151
6 Results and discussions....................................................................... 152
6.1 Mass transfer effects on the gas flow and heat transfer ............... 152
6.2 Porous layer effects on the transport processes ........................... 155
6.2.1 Transport processes in PEMFCs ...................................... 155
6.2.2 Transport processes in SOFCs ......................................... 160
6.3 Two-phase flow and its effects on the cell performance ............. 163
7 Conclusions......................................................................................... 168
Chapter 5:
Two-phase transport in porous gas diffusion electrodes 175
S. Litster & N. Djilali
1 Introduction......................................................................................... 175
1.1 PEM fuel cells ............................................................................ 175
1.2 Porous media .............................................................................. 177
1.3 Porous media in PEMFC electrodes ........................................... 178
2 Single-phase transport......................................................................... 181
2.1 Transport of a single-phase with a single component ................. 181
2.1.1 Permeability .................................................................... 181
2.2 Transport of a single-phase with two components ...................... 182
2.2.1 Effective diffusivity in porous media............................... 183
2.2.2 Determination of the binary diffusion coefficient .............. 185
2.2.3 Transport of a single-phase with more than two
components...................................................................... 185
2.3 Knudsen diffusion....................................................................... 186
2.4 Determination of Knudsen diffusivity........................................ 187
2.5 Knudsen transition regime .......................................................... 187
2.5.1 Comparison of the diffusivities ........................................ 187
3 Two-phase systems.............................................................................. 188
3.1 Two-phase regimes ..................................................................... 189
3.2 Hydrodynamics and capillarity in two-phase systems................. 191
3.2.1 Capillary pressure curves................................................. 195
3.3 Relative permeability.................................................................. 197
4 Multiphase flow models...................................................................... 200
4.1 Multi-fluid model ....................................................................... 200
4.1.1 Phase change.................................................................... 201
4.1.2 Application ...................................................................... 203
4.2 Mixture model ............................................................................ 205
4.3 Moisture diffusion model............................................................ 207
4.4 Porosity correction model ........................................................... 208
4.5 Evaluation of the multiphase models in the literature ................ 208
5 Outstanding issues and conclusions .................................................... 208
Chapter 6:
Numerical simulation of proton exchange membrane fuel cell 215
T.C. Jen, T.Z. Yan & Q.H. Chen
1 Introduction......................................................................................... 216
2 One-dimensional (1-D) model ............................................................ 216
2.1 General 1-D model ..................................................................... 217
2.1.1 Model description ........................................................... 217
2.1.2 Model assumptions.......................................................... 218
2.1.3 Governing equations........................................................ 218
2.1.4 Catalyst layers ................................................................. 219
2.1.5 Membrane........................................................................ 220
2.1.6 Boundary conditions........................................................ 221
2.1.7 Results and discussion ..................................................... 223
2.1.8 Summary.......................................................................... 223
2.2 General 2-D model ..................................................................... 224
2.2.1 Model description and assumptions................................. 227
2.2.2 Mathematical model ........................................................ 227
2.2.3 Boundary conditions........................................................ 230
2.2.4 Numerical procedures ..................................................... 230
2.2.5 Results and discussion..................................................... 230
2.2.6 Concluding remarks......................................................... 232
2.3 Three-dimensional (3-D) model.................................................. 233
2.3.1 Model development ......................................................... 233
2.3.2 Mathematical model ........................................................ 234
2.3.3 Boundary conditions........................................................ 238
2.3.4 Discretization strategies................................................... 238
2.3.5 Solution algorithms ......................................................... 238
2.3.6 Results and discussion..................................................... 239
2.4 Summary and conclusion ........................................................... 244
Chapter 7:
Mathematical modeling of fuel cells: from analysis to numerics 247
M. Vynnycky & E. Birgersson
1 Introduction ........................................................................................ 247
2 PEFC................................................................................................... 250
2.1 Mathematical formulation for flow in the cathode...................... 251
2.1.1 Channel............................................................................ 251
2.1.2 Porous backing ................................................................ 253
2.1.3 Boundary conditions........................................................ 254
2.2 Nondimensionalization ............................................................... 256
2.3 Parameters .................................................................................. 258
2.4 Narrow-gap approximation......................................................... 258
2.5 Further simplifications and observations .................................... 261
2.6 Numerics and results .................................................................. 264
2.6.1 Effect of A and Q ............................................................ 264
2.6.2 'Polarization surfaces' ...................................................... 268
3 DMFC................................................................................................. 270
3.1 Mathematical formulation for flow in the anode......................... 271
3.1.1 Channel............................................................................ 271
3.1.2 Porous backing ................................................................ 271
3.1.3 Boundary conditions........................................................ 272
3.2 Nondimensionalization ............................................................... 272
3.3 Parameters .................................................................................. 273
3.4 Narrow-gap approximation ......................................................... 273
3.5 Further simplifications and observations..................................... 273
3.6 Numerics and results................................................................... 277
4 Conclusions......................................................................................... 278
Chapter 8:
Modeling of PEM fuel cell stacks with hydraulic network approach 283
J.J. Baschuk & X. Li
1 Introduction......................................................................................... 284
2 Model formulation .............................................................................. 285
2.1 Stack flow model ........................................................................ 288
2.2 Manifold pressure loss ................................................................ 290
2.3 Cell pressure loss ........................................................................ 292
2.4 Mass consumed in the catalyst layers.......................................... 293
2.5 Boundary conditions................................................................... 294
3 Numerical procedure .......................................................................... 294
3.1 Outer iteration............................................................................. 295
3.2 Inner iteration ............................................................................. 297
3.3 Numerical procedure summary .................................................. 298
4 Results and discussion......................................................................... 298
5 Conclusions......................................................................................... 309
Chapter 9:
Two-phase microfluidics, heat and mass transport in direct
methanol fuel cells 317
G. Lu & C.-Y. Wang
1 Introduction......................................................................................... 317
2 Fundamentals of DMFC...................................................................... 320
2.1 Cell components and polarization curve .................................... 320
2.2 Thermodynamics......................................................................... 322
2.3 Methanol oxidation and oxygen reduction kinetics..................... 324
3 Two-phase flow phenomena................................................................ 325
3.1 Bubble dynamics in anode ......................................................... 325
3.1.1 Flow visualization................................................................ 325
3.1.2 Bubble diameter and drift velocity....................................... 328
3.1.3 Pressure drop ....................................................................... 329
3.2 Liquid water transport in cathode............................................... 329
3.2.1 Flooding in the cathode........................................................ 329
3.2.2 Flooding visualization.......................................................... 331
4 Mass transport phenomena ................................................................. 333
4.1 Methanol crossover ........................................................................ 333
4.2 Water management in portable DMFC systems.............................. 335
5 Heat transport.......................................................................................... 337
6 Mathematical modeling and experimental diagnostics ............................ 339
6.1 Mathematical modeling .................................................................. 340
6.2 Experimental diagnostics ................................................................ 341
6.3 Model validation............................................................................. 343
7 Application: micro DMFC ...................................................................... 344
8 Summary and outlook ............................................................................. 350
专业书籍
下载地址:(回复后可见)
|