《Next-Generation Batteries and Fuel Cells for Commercial,Military, and Space Applications》
下一代的电池和燃料电池为商业,军事和航天应用。
作者:A.R. JHA
出版社:CRC
出版时间:2012年
《Next-Generation Batteries and Fuel Cells for Commercial,Military, and Space Applications》
《Next-Generation Batteries and Fuel Cells for Commercial,Military, and Space Applications》
《Next-Generation Batteries and Fuel Cells for Commercial,Military, and Space Applications》
《Next-Generation Batteries and Fuel Cells for Commercial,Military, and Space Applications》
《Next-Generation Batteries and Fuel Cells for Commercial,Military, and Space Applications》
目录
Foreword.......................................................................................................xxi
Preface.......................................................................................................... xxv
Author.........................................................................................................xxix
1 Current Status of Rechargeable Batteries and Fuel Cells........................1
1.1 Rechargeable Batteries........................................................................1
1.2 Fundamental Aspects of a Rechargeable Battery.................................2
1.2.1 Critical Performance Characteristics of Rechargeable
Batteries.................................................................................4
1.2.2 Capabilities of Widely Used Rechargeable Batteries in
Commercial Applications......................................................5
1.2.3 Recycling of Batteries............................................................6
1.2.3.1 Toxicity of Materials Used in Manufacturing
Rechargeable Batteries...........................................7
1.2.3.2 Safe Toxicity Limits for Workers...........................8
1.2.4 Three Main Characteristics of a Rechargeable Battery...........9
1.2.5 Cost-Effective Justification for the Deployment of a
Specific Rechargeable Battery for a Specified Application....10
1.2.5.1 Techniques to Improve Battery Performance
in Terms of Weight and Cost...............................11
1.2.5.2 Why Use Pb-Acid Batteries for Automobiles?......14
1.2.5.3 Description of Flow Batteries...............................14
1.3 Rechargeable Batteries Irrespective of Power Capability...................15
1.3.1 Rechargeable Batteries for Low- and Moderate-Power
Applications.........................................................................15
1.4 Rechargeable Batteries for Commercial and Military Applications...16
1.4.1 High-Power Batteries for Commercial Applications............17
1.4.2 Critical Role of Ni-Cd in Rechargeable Batteries for
Military Aircraft..................................................................19
1.4.3 Benefits of Ni-MH Rechargeable Batteries for Military
Aircraft................................................................................20
viii ◾ Contents
1.4.3.1 Electrode Material Cost and Characteristics
for Ni-MH Batteries............................................21
1.4.3.2 Impact of Temperature on Discharge
Capacity of Ni-MH Batteries...............................22
1.4.3.3 Charging Procedure for a Ni-MH Battery...........22
1.4.3.4 Degradation Factors in Ni-MH Battery
Performance........................................................23
1.4.4 Thermal Batteries for Aerospace and Defense
Applications ....................................................................23
1.4.4.1 Batteries for Space Applications...........................24
1.4.5 Rechargeable Batteries for Commercial Applications...........24
1.4.5.1 Ni-Zn Batteries for Commercial Applications.....26
1.4.6 Rechargeable Battery Requirements for Electric and
Hybrid Electric Vehicles......................................................27
1.4.6.1 Test Requirements for Rechargeable Batteries
Needed for Electric and Hybrid Vehicles ............28
1.4.6.2 Predicting the Battery Life of Electric and
Hybrid Vehicles...................................................29
1.4.6.3 Performance Capabilities of Batteries
Currently Used for Electric and Hybrid
Vehicles............................................................. 29
1.5 Batteries for Low-Power Applications.............................................. 34
1.5.1 Batteries Using Thin-Film and Nanotechnologies...............35
1.5.2 TF Microbatteries................................................................36
1.5.3 Charge-Discharge Cycles and Charging Time of
Low-Power Batteries............................................................37
1.5.4 Structural Configuration for Low-Power Batteries...............38
1.5.5 Most Popular Materials Used for Low-Power Batteries........38
1.5.5.1 Low-Power Standard Cells...................................38
1.5.5.2 Miniature Primary Batteries................................39
1.5.6 Low-Power Batteries Using Nanotechnology ..................... 40
1.5.7 Paper Batteries Using Nanotechnology............................... 40
1.6 Fuel Cells.........................................................................................41
1.6.1 Description of the Most Popular Fuel Cell Types and
Their Configurations...........................................................41
1.6.2 Types of Fuel Cells............................................................. 42
1.7 Conclusion...................................................................................... 42
References...................................................................................................43
2 Batteries for Aerospace and Communications Satellites.......................45
2.1 Introduction.....................................................................................45
2.2 Onboard Electrical Power System.................................................... 46
2.2.1 Electrical Power-Bus Design Configuration........................ 46
Contents ◾ ix
2.2.2 Solar-Array Panels................................................................47
2.2.2.1 Solar Panel Performance Requirements to
Charge the Space-Based Batteries........................49
2.3 Battery Power Requirements and Associated Critical
Components .................................................................................. 49
2.3.1 Solar-Array Performance Requirements...............................51
2.3.2 Electrical Power Requirements from the Solar Arrays
during Dark Periods............................................................51
2.3.3 Solar Panel Orientation Requirements to Achieve
Optimum Power from the Sun............................................51
2.3.4 Solar-Array Configurations Best Suited for Spacecraft
or Communications Satellite ..............................................52
2.3.5 Direct Energy Transfer System............................................52
2.4 Cost-Effective Design Criterion for Battery-Type Power Systems
for Spacecraft....................................................................................54
2.4.1 Method of Comparison for Optimum Selection of
Power System for a Spacecraft..............................................54
2.4.1.1 Step-by-Step Approach for Power System
Performance........................................................55
2.4.1.2 Modeling Requirements to Determine I-V
Characteristics.....................................................56
2.4.1.3 Impact on Battery Electrical Parameters
from Onboard Charging and Discharging..........59
2.5 Spacecraft Power System Reliability.................................................59
2.5.1 Failure Rates for Various System Components....................60
2.5.2 Failure Rate Estimation.......................................................61
2.5.3 Reliability Improvement of the Spacecraft Power
System Using CC and PWM Regulator Techniques............61
2.5.4 Reliability Improvement of the Spacecraft Power System
Using DET System, CC, and Battery Booster Techniques..... 64
2.5.5 Weight and Cost Penalties Associated with Redundant
Systems............................................................................... 64
2.5.5.1 Total System Weight and Cost as a Function
of Mission Length.............................................. 66
2.5.5.2 Reliability Degradation with the Increase in
Mission Duration............................................... 66
2.5.5.3 Increase in Weight and Cost due to
Redundant Systems.............................................68
2.6 Ideal Batteries for Aerospace and Communications Satellites...........69
2.6.1 Typical Power Requirements for Space-Based Batteries..........69
2.6.2 Aging Effect Critical in Space-Based Batteries.....................72
2.7 Performance Capabilities and Battery Power Requirements for
the Latest Commercial and Military Satellite Systems......................72
x ◾ Contents
2.7.1 Commercial Communication Satellite Systems...................73
2.7.1.1 Performance Capabilities of the Commercial
Communications Satellite Systems......................74
2.8 Military Satellites for Communications, Surveillance,
Reconnaissance, and Target Tracking ..............................................75
2.8.1 Military Communications Satellites and Their
Capabilities....................................................................... 76
2.8.1.1 DSCS-III Communication Satellite System.........76
2.8.1.2 Power Generation, Conditioning, and
Storage Requirements .........................................76
2.8.2 MILSATCOM System........................................................78
2.8.3 European Communications Satellite System.......................78
2.9 Batteries Best Suited to Power Satellite Communications
Satellites.......................................................................................79
2.9.1 Rechargeable Batteries Most Ideal for Communications
Satellites .............................................................................79
2.9.1.1 Performance Capabilities of Ni-Cd
Rechargeable Batteries for Space Applications.......79
2.9.1.2 Performance Parameters of Ni-H2 Batteries.........80
2.9.1.3 Performance Capabilities of Ag-Zn Batteries.......81
2.9.1.4 Space Applications of Lithium-Ion Batteries .......82
2.10 Conclusion.......................................................................................82
References...................................................................................................83
3 Fuel Cell Technology.............................................................................85
3.1 Introduction.....................................................................................85
3.1.1 Classifications of Fuel Cells.................................................86
3.1.1.1 Aqueous Fuel Cell Using Specific Electrolyte .....86
3.1.1.2 Fuel Cells Using Semisolid Electrolyte................86
3.1.1.3 Fuel Cells Using Molten Electrolyte ...................87
3.1.2 Classifications of Fuel Cells Based on Electrolytes...............88
3.2 Performance Capabilities of Fuel Cells Based on Electrolytes...........89
3.2.1 High-Temperature Fuel Cells with Semisolid Molten
Electrolyte...........................................................................89
3.3 Low-Temperature Fuel Cells Using Various Electrolytes...................91
3.3.1 Performance of Low-Temperature and
Low-Pressure Fuel Cells Using Aqueous Electrolyte ...........92
3.3.2 Output Power Capability of Aqueous Fuel Cells.................93
3.4 Fuel Cells Using a Combination of Fuels..........................................94
3.4.1 Liquid-Gas Fuel Cell Design...............................................94
3.4.2 Performance of Liquid-Liquid Fuel Cell Design..................94
3.5 Fuel Cell Designs for Multiple Applications.....................................95
3.5.1 Fuel Cells for Electric Storage Battery Applications.............95
Contents ◾ xi
3.5.2 DSK-Based Fuel Cells Using Hydrogen-Based DSK
Electrodes and Operating under Harsh Conditions.............95
3.5.2.1 Performance of DSK-Based Fuel Cells with
Monolayer DSK Electrodes.................................96
3.6 Ion-Exchange Membrane Fuel Cells.................................................98
3.6.1 Performance Specifications for IEM Fuel Cells and
Batteries for Space Applications...........................................98
3.6.2 Fuel Cells Using Low-Cost, Porous Silicon Substrate
Materials .............................................................................99
3.6.2.1 Hydrogen-Oxygen Power Fuel Cell Using
Porous Silicon Structure .....................................99
3.6.2.2 Fuel Cell Reactions and Thermodynamic
Efficiencies.........................................................101
3.6.2.3 DMFC Devices Using a PEM Structure ...........102
3.6.2.4 Silicon-Based DMFC Fuel Cells........................107
3.7 Potential Applications of Fuel Cells................................................110
3.7.1 Fuel Cells for Military and Space Applications..................110
3.7.1.1 Fuel Cells for Battlefield Applications................110
3.7.1.2 Deployment of Fuel Cells in UAVs
Acting as Electronic Drones Capable of
Providing Surveillance, Reconnaissance,
Intelligence Gathering, and Missile
Attack Capabilities .......................................111
3.7.1.3 Why Fuel Cells for Counterinsurgency
Applications? ....................................................112
3.8 Fuel Cells for Aircraft Applications................................................116
3.8.1 Performance Capabilities and Limitations of
All-Electric Aircraft or Vehicles.........................................116
3.8.2 Fuel Cells for Electric Vehicles and Hybrid Electric
Vehicles............................................................................. 117
3.9 Fuel Cells for Commercial, Military, and Space
Applications...................................................................... 117
3.9.1 Fuel Cells for Automobiles, Buses, and Scooters................ 118
3.9.1.1 Low-Cost, High-Efficiency,
Low-Temperature H2-O2 Fuel Cells...................121
3.9.1.2 Design Aspects and Performance Parameters
of a Low-Cost, Moderate-Temperature Fuel
Cell....................................................................122
3.9.1.3 Design Requirements for Cost-Effective
Fuel Cells...........................................................125
3.9.2 Ideal Fuel Cells for the Average Homeowner.....................125
3.9.2.1 Design Requirements for Fuel Cells for
Homeowners.....................................................126
xii ◾ Contents
3.9.2.2 Compact Fuel Cells for Cars, Scooters, and
Motor Bikes.......................................................126
3.9.2.3 Fuel Cells for Portable Electric Power Systems.....128
3.10 Fuel Cells Capable of Operating in Ultra-High-Temperature
Environments.................................................................................129
3.10.1 Types of Materials Used in Ultra-High-Temperature
Fuel Cells...........................................................................129
3.10.2 Solid Electrolyte Most Ideal for Fuel Cells Operating at
Higher Temperatures (600–1,000°C)................................130
3.10.2.1 Molten Electrolytes Offer Improved
Efficiencies in High-Temperature Operations......130
3.10.2.2 Performance Capabilities of Porous Electrodes....131
3.10.3 Electrode Kinetics and Their Impact on High-Power
Fuel Cell Performance.......................................................131
3.10.4 Polarization for Chemisorption-Desorption Rates.............132
3.11 Fuel Cell Requirements for Electric Power Plant Applications........133
3.11.1 Performance Requirements of Fuel Cells for Power
Plants.............................................................................. 133
3.12 Summary........................................................................................134
References.................................................................................................135
4 Batteries for Electric and Hybrid Vehicles...........................................137
4.1 Introduction...................................................................................137
4.2 Chronological Development History of Early Electric Vehicles
and Their Performance Parameters.................................................139
4.2.1 Electric-Based Transportation Means................................139
4.3 Electric and Hybrid Electric Vehicles Developed Earlier by
Various Companies and Their Performance Specifications ............140
4.3.1 ZAPTRUCK ....................................................................140
4.3.2 ZAP ALIAS......................................................................141
4.3.3 Aptera Motors ...................................................................141
4.3.4 Tesla Motors......................................................................142
4.3.5 Baker Motors.....................................................................142
4.4 Development History of the Latest Electric and Hybrid Electric
Vehicle Types and Their Performance Capabilities and Limitations.....143
4.4.1 GM Chevy Volt.................................................................143
4.4.2 Ford...................................................................................145
4.4.2.1 Ford Focus ........................................................145
4.4.2.2 Ford Escape ......................................................146
4.4.2.3 Ford C-Max and Ford C-Max Energi ...............148
4.4.3 Nissan................................................................................148
4.5 Performance Requirements of Various Rechargeable Batteries........149
4.5.1 Battery Pack Energy Requirements ................................... 151
Contents ◾ xiii
4.5.2 Battery Materials and Associated Costs............................. 151
4.5.2.1 Materials for Rechargeable Batteries
Deployed in EVs and EHVs............................... 152
4.5.2.2 Impact of Road and Driving Conditions on
Battery Charging Times and Costs....................153
4.6 Materials for Rechargeable Batteries...............................................156
4.6.1 Materials Requirements for Three Functional
Components of the Li-Ion Battery.....................................156
4.6.1.1 Anode................................................................156
4.6.1.2 Cathode.............................................................157
4.6.1.3 Electrolyte.........................................................157
4.6.2 Major Performance Characteristic of Li-Ion
Batteries.................................................................157
4.6.3 Characteristic of Nickel-Metal-Hydride Rechargeable
Batteries.............................................................................158
4.6.4 Zinc-Air Rechargeable Fuel Cells for EVs and HEVs........158
4.6.5 Energy Density Levels for Various Rechargeable
Batteries ............................................................................159
4.6.5.1 Li-Ion Battery Pack Configuration....................160
4.6.5.2 Some Unique Problems Associated with
Li-Ion Battery Packs..........................................162
4.6.6 Design Concept Incorporating the Smart Grid
Technology........................................................................166
4.6.6.1 Charging-Load Impact on the Utility
Gridlines......................................................... 167
4.6.6.2 Typical Charging Rates for Rechargeable
Battery Packs and Electrical Load......................168
4.6.7 Materials and Their Properties Best Suited for
Rechargeable Batteries.......................................................169
4.6.7.1 Major Material Costs for a 100 Ah High-
Energy Rechargeable Battery Pack.....................169
4.6.7.2 Estimated Costs for Battery Packs Widely
Used in All-Electric and Hybrid Electric
Vehicles.............................................................169
4.6.8 Impact of Component Costs on the Procurement Cost
of Battery Packs.................................................................172
4.6.8.1 Estimated Current and Future Component
Costs ................................................................172
4.6.8.2 Material Cost Estimates....................................172
4.7 Critical Role of Rare Earth Materials in the Development of
EVs and HEVs................................................................................ 174
4.7.1 Identification of Various Rare Earth Materials Used in
EVs and HEVs ..................................................................175
xiv ◾ Contents
4.7.2 Impact of Future Rare Earth Materials on the
Performance of EVs and HEVs..........................................175
4.7.3 Costs Associated with Refining, Processing, and
Quality Control Inspection of Rare Earth Materials ........177
4.8 Conclusion.....................................................................................179
References ................................................................................................181
5 Low-Power Rechargeable Batteries for Commercial, Space, and
Medical Applications...........................................................................183
5.1 Introduction...................................................................................183
5.2 Low-Power Battery Configurations................................................186
5.2.1 Low-Power Batteries Using Cylindrical
Configuration......................................................... 186
5.2.2 Carbon-Zinc Primary Low-Power Batteries and Their
Characteristics...................................................................186
5.2.3 Performance Capabilities and Limitations of Alkaline
Manganese Batteries..........................................................187
5.2.4 History of Primary Lithium-Based Batteries and Their
Performance Parameters....................................................188
5.2.5 Nickel-Metal-Hydride, Nickel-Cadmium, and
Lithium-Ion Rechargeable Batteries ..................................191
5.2.5.1 Peculiarities in Rechargeable Batteries...............193
5.2.5.2 Design Considerations for Small Low-Power
Rechargeable Batteries ......................................193
5.2.5.3 Frequent Mathematical Expressions Used in
the Design of Batteries.......................................194
5.2.5.4 Contributing Factors to Battery Weight............195
5.3 Batteries for Miniaturized Electronic System Applications.............195
5.3.1 Brief Description of Rechargeable Batteries Best Suited
for Embedded-System Applications...................................197
5.3.1.1 Characteristics of an Alkaline Battery for a
Simple Embedded-System Application..............197
5.3.1.2 Performance Characteristics of a Battery Best
Suited for the Least Complex Embedded-
System Application............................................198
5.3.1.3 Characteristics of a Battery Best Suited
for the Most Complex Embedded-System
Application........................................................199
5.3.2 Battery Suitability and Unique Performance
Requirements for Aerospace Applications......................... 200
5.3.2.1 Potential Applications of Lithium, Alkaline,
and Zinc-Air Batteries.......................................201
5.4 Batteries for Medical Applications................................................. 204
Contents ◾ xv
5.4.1 Recently Developed Batteries for Specific Medical
Applications...................................................................... 206
5.4.1.1 Performance Characteristics of Li-I2 Batteries....... 206
5.4.2 Microbattery and Smart Nanobattery Technologies
Incorporating Lithium Metal for Medical and Military
Applications.......................................................................209
5.4.2.1 Smart Lithium-Ion Batteries..............................210
5.4.3 Low-Power Zinc-Air, Nickel-Metal-Hydride, and
Nickel-Cadmium Rechargeable Batteries..........................210
5.4.3.1 Zinc-Air Rechargeable Batteries........................210
5.4.3.2 Nickel-Cadmium Rechargeable Batteries..........211
5.4.3.3 Nickel-Metal-Hydride Rechargeable Batteries.......212
5.5 Selection Criteria for Primary and Secondary (Rechargeable)
Batteries for Specific Applications.................................................. 220
5.5.1 How to Select a Battery for a Particular Application......... 220
5.6 Conclusion.....................................................................................223
References.................................................................................................224
6 Rechargeable Batteries for Military Applications...............................227
6.1 Introduction...................................................................................227
6.2 Potential Battery Types for Various Military System
Applications................................................................................230
6.2.1 Aluminum-Air Rechargeable Batteries for Military
Applications.......................................................................230
6.2.1.1 Description of Key Elements of These
Batteries........................................................... 232
6.2.1.2 Performance Capabilities, Limitations, and
Uses of Saline Batteries......................................233
6.2.1.3 Performance Capabilities and Uses of
Alkaline Batteries..............................................233
6.2.1.4 Bipolar Silver-Metal-Hydride Batteries for
Military Applications.........................................236
6.2.1.5 Rechargeable Silver-Zinc Batteries for
Military Applications.........................................241
6.3 Low-Power Batteries for Various Applications................................247
6.3.1 Thin-Film Microbatteries Using MEMS Technology........248
6.3.2 Microbatteries Using Nanotechnology Concepts...............248
6.3.3 Critical Design Aspects and Performance
Requirements for Thin-Film Microbatteries......................249
6.4 High-Power Lithium and Thermal Batteries for Military
Applications....................................................................................249
6.4.1 Materials Requirements for Cathode, Anode, and
Electrolyte Best Suited for High-Power Batteries...............251
xvi ◾ Contents
6.4.1.1 Cathode Materials and Their Chemistries ........251
6.4.1.2 Anode Materials and Their Chemistries ............252
6.4.1.3 Electrolytes and Their Chemistries ...................252
6.4.2 Design Requirements for Thermal Batteries for
Specific Applications..........................................................253
6.4.2.1 Design Requirements for TB1 Battery Systems...... 254
6.4.2.2 Design Requirements for TB2 Battery
Systems...........................................................254
6.4.3 Environmental Requirements for Thermal Battery
Systems..............................................................................255
6.4.4 Structural Description of the Batteries and Their
Physical Parameters...........................................................256
6.4.5 Actual Values of Performance Parameters Obtained
through Laboratory Testing...............................................256
6.4.6 Conclusive Remarks on Thermal Battery Systems.............257
6.5 High-Power Rechargeable Batteries for Underwater Vehicles.........259
6.5.1 Performance Capability and Design Aspects of
Li-SO2Cl2 Battery Systems................................................259
6.5.2 Characteristics of Electrolytes Required to Achieve
Improvements in Electrochemistry .................................. 260
6.5.3 Effects of Thermal Characteristics on the Flowing
Electrolyte ....................................................................... 260
6.5.4 Output Power Variations as a Function of Discharge
Duration in Volta Stack Batteries Using Flowing
Electrolytes........................................................................262
6.5.5 Impact of Temperature and DOD on the Thermal
Conductivity and the Specific Heat of the Electrolytes
Used in Thermal Batteries ................................................263
6.5.6 Impact of Discharge Duration on the Battery Power
Output............................................................................. 264
6.5.7 Electrolyte Conductivity and Optimization of
Electrolyte....................................................................... 265
6.6 High-Power Battery Systems Capable of Providing Electrical
Energy in Case of Commercial Power Plant Shutdown over a
Long Duration ............................................................................. 266
6.6.1 What Is a Vanadium-Based Redox Battery?.......................267
6.6.2 Potential Applications of Vanadium-Based Redox
Batteries.............................................................................267
6.6.3 Structural Details and Operating Principles of
Vanadium-Based Redox Batteries..................................... 268
6.7 Batteries Best Suited for Drones and Unmanned Air Vehicles........269
6.7.1 Battery Power Requirements for Electronic Drones...........269
6.7.2 Battery Requirements for UAVs ........................................270
Contents ◾ xvii
6.7.3 Batteries for Countering Improvised Explosive Devices.....271
6.7.3.1 History of Property Damage and Bodily
Injury to Soldiers ..............................................272
6.7.3.2 Anti-IED Techniques to Minimize Property
Damage and Injury to Soldiers..........................272
6.7.3.3 Battery Performance Requirements for
Dismounted Anti-IED Systems.........................273
6.8 Conclusion.....................................................................................274
References.................................................................................................276
7 Batteries and Fuel Cells for Aerospace and Satellite System
Applications.........................................................................................277
7.1 Introduction...................................................................................277
7.2 Rechargeable or Secondary Batteries for Commercial and
Military Aircraft Applications 279
7.2.1 Sealed Lead-Acid Batteries for Commercial and
Military Applications 279
7.2.1.1 Optimum Charge, Discharge, and Storage
Conditions for Lead-Acid Batteries 281
7.2.1.2 Pros, Cons, and Major Applications of
Lead-Acid Batteries 281
7.2.1.3 Life Cycle of SLABs for Aircraft
Applications................................................. 282
7.2.1.4 Effect of Depth of Discharge on Life Cycle
of the Lead-Acid Battery 282
7.3 Aluminum-Air Batteries for Aerospace Applications ......................285
7.3.1 Performance Capabilities and Limitations of Al-Air
Batteries 285
7.3.2 Impact of Corrosion on Al-Air Battery Performance as
a Function of Anode Current Density 286
7.3.3 Outstanding Characteristics and Potential Applications
of Al-Air Rechargeable Battery Systems 287
7.4 Long-Life, Low-Cost, Rechargeable Silver-Zinc Batteries Best
Suited for Aerospace and Aircraft Applications 288
7.4.1 Vented Secondary Batteries Best Suited for Aircraft
and Aerospace Applications 288
7.4.2 Typical Self-Discharge Characteristics of an Ag-Zn
Battery 289
7.4.3 Safety, Reliability, and Disposal Requirements for
Ag-Zn Batteries 289
7.4.4 Typical Battery Voltage Level and Cycle Life.....................290
7.5 SLABs for Commercial and Military Aircraft Applications............291
7.5.1 Performance Aspects of SLABs..........................................292
xviii ◾ Contents
7.5.1.1 Performance of the EaglePicher Battery
Ultralife UB1-2590 ...........................................292
7.5.1.2 SLAB from EaglePicher for Commercial
Applications.......................................................293
7.5.2 Test Procedures and Conditions for SLABs.......................293
7.5.3 Impact of Charge Rate and Depth of Discharge on the
Cycle Life of SLABs ..........................................................293
7.5.4 Life-Cycle Test Conditions................................................294
7.6 Thermal Battery for Aircraft Emergency Power and
Low-Earth-Orbiting Spacecraft .....................................................295
7.6.1 Performance Capabilities of LiAl/FeS2 Thermal
Batteries 297
7.7 Rechargeable Batteries for Naval Weapon System Applications......297
7.7.1 Performance Characteristics of Li-SOCL2 Batteries...........298
7.8 Thermal Battery Design Configurations and Requirements for
Launch Vehicle Applications .........................................................298
7.8.1 Design Aspects and Performance Capabilities of
Advanced Thermal Batteries..............................................298
7.8.2 Unique Performance Capabilities of Thermal
Batteries.................................................................... 299
7.9 High-Temperature Lithium Rechargeable Battery Cells................ 300
7.9.1 Unique Performance Parameters and Design Aspects
of Solid Electrolyte Cells.................................................. 300
7.10 Solid Electrolyte Technology for Lithium-Based Rechargeable
Batteries..........................................................................................301
7.10.1 Critical Role of Solid Electrolytes......................................301
7.10.2 Improvement in Performance Parameters of Lithium
Rechargeable Batteries ......................................................301
7.10.3 Impact of Lithium Chloride Oxide Salt Concentration
in the Solution of Liquid Plasticizer on Room-
Temperature Ionic Conductivity .......................................303
7.11 Rechargeable Batteries for Electronic Drones and Various
UAVs 303
7.11.1 Performance Requirements for Batteries Best Suited
for Electronic Drone Applications ....................................303
7.11.2 Rechargeable Battery Requirements for UAVs,
Unmanned Combat Air Vehicles, and MAVs................... 304
7.11.3 Rechargeable Batteries for Glider Applications................. 306
7.12 Rechargeable Batteries for Space-Based Military Systems and
Satellite Communications ..............................................................307
7.12.1 Rechargeable Battery Requirements for Military
Space-Based Sensors Requiring Moderate Power Levels....307
7.13 High-Power Fuel Cells for Satellites with Specific Missions............310
Contents ◾ xix
7.13.1 Performance of the MSK Hydrogen-Oxygen Fuel Cell
for Communications Satellite Applications........................313
7.14 Classification of Fuel Cells Based on the Electrolytes.....................314
7.14.1 Performance Parameters of Fuel Cells Using Various
Fuels and Their Typical Applications.................................314
7.14.2 Comparing Fuel Cell Parameters ...................................... 315
7.15 Battery Sources for Spacecraft Applications....................................316
7.15.1 Application of the First Principle Model to Spacecraft
Operations for Aging.........................................................316
7.15.2 Typical Performance Characteristics of the 40 Ah
Sodium-Sulfur Battery Cell ..............................................317
7.16 Conclusion.....................................................................................317
References.................................................................................................320
8 Low-Power Batteries and Their Applications......................................321
8.1 Introduction...................................................................................321
8.2 Performance Capabilities of Lithium-Based Batteries
for Low-Power Applications 322
8.2.1 Benefits of Solid Electrolytes in Lithium-Based
Rechargeable Batteries 323
8.2.2 Total Conductivity of the Battery Material .......................324
8.3 Batteries for Low-Power Electronic Devices....................................327
8.3.1 Impact of Materials and Packaging Technology on
Battery Performance..........................................................327
8.3.2 Glossary of Terms Used to Specify Battery
Performance Parameters ...................................................328
8.3.3 Fabrication Aspects of Batteries for Low-Power
Electronic Device Applications..........................................329
8.3.4 Performance Capabilities and Limitations of Various
Primary and Secondary Batteries for Low-Power
Applications.......................................................................330
8.3.4.1 Carbon-Zinc Primary Batteries .........................330
8.3.4.2 Alkaline-Manganese Batteries ..........................331
8.4 Performance Capabilities of Primary Lithium Batteries..................331
8.4.1 Lithium-Iodine Batteries...................................................332
8.4.2 LiMnO2 Battery................................................................332
8.4.3 Lithium-Carbon Fluoride Battery .....................................333
8.4.4 Lithium-Sulfur-Dioxide Battery........................................334
8.4.5 Lithium-Thionyl-Chloride Battery.....................................334
8.4.6 Lithium-Ferrous Sulfide (Li-FeS2) Battery.........................335
8.4.7 Conclusions on Lithium-Based Batteries...........................336
8.5 Applications of Small Rechargeable or Secondary Cells..................337
8.5.1 Sealed Lead-Acid Batteries ................................................338
xx ◾ Contents
8.5.2 Small Li-Ion Rechargeable Batteries..................................338
8.5.3 S-Ni-Cd Rechargeable Batteries........................................339
8.5.4 Nickel-Metal-Hydride Rechargeable Batteries.................. 340
8.5.5 Lithium-Polymer-Electrolyte Cells................................... 340
8.6 Thin-Film Batteries, Microbatteries, and Nanobatteries................ 342
8.6.1 Structural Aspects and Performance Capabilities of
Thin-Film Batteries........................................................... 343
8.6.2 Thin-Film Metal-Oxide Electrodes for
Lithium-Based Microbatteries.......................................... 344
8.6.3 Performance Capabilities and Applications of
Microbatteries................................................................... 348
8.6.4 Electrical Performance Parameters of Nanobatteries..........352
8.6.4.1 Applications of Nanomaterials,
Carbon-Nanotubes, and Carbon-Nanotube
Arrays in Development Batteries.......................353
8.7 Batteries for Health-Related Applications.......................................353
8.7.1 Battery Requirements for Cardiac Rhythm–Detection
Applications.......................................................................354
8.7.2 Various Batteries Used to Treat Cardiac Diseases..............356
8.7.2.1 Li-Ion Batteries Best Suited Primarily for
Medical Devices Used to Treat Cardiac
Diseases and to Detect Unknown Ailments ......356
8.7.2.2 Li-I2 Batteries for Treating Cardiac Diseases ....357
8.7.2.3 Li-AgVO2 Batteries for Treatment of Cardiac
Diseases 358
8.7.2.4 Batteries for Critical Diagnostic Procedures .....359
8.8 Batteries for the Total Artificial Heart .......................................... 360
8.8.1 Major Benefits of Li-Ion Batteries Used for Various
Medical Applications.........................................................361
8.8.2 Limitations of Li-Ion Batteries...........................................362
8.8.3 Cell-Balancing Requirements for Li-Ion Rechargeable
Battery Packs.....................................................................362
8.8.4 Active-Balancing Technique .............................................365
8.9 Conclusion.................................................................................... 366
References.................................................................................................368
Index.................................................................................................................369