《Microbial Fuel Cells》
微生物燃料电池
作者:Bruce E. Logan
The Pennsylvania State University
出版社:Wiley
出版时间:2008年
《Microbial Fuel Cells》
《Microbial Fuel Cells》
《Microbial Fuel Cells》
《Microbial Fuel Cells》
目录
PREFACE
1. INTRODUCTION
1 . l . Energy needs I 1
1.2. Energy and the challenge of global climate change I 2
1.3. Bioelectricity generation using a microbial fuel cell-the process of
electrogenesis I 4
1.4. MFCs and energy sustainability of the water infrastructure I 6
1.5. MFC technologies for wastewater treatment I 7
1.6. Renewable energy generation using MFCs I 9
1.7. Other applications of MFC technologies I 1 1
xi
1
2. EXOELECTROGENS
2.1. Introduction I 12
2.2. Mechanisms of electron transfer / 13
2.3. MFC studies using known exoelectrogenic strains I 18
2.4. Community analysis I 22
2.5. MFCs as tools for studying exoelectrogens I 27
3. VOLTAGEG ENERATION
3.1. Voltage and current I 29
3.2. Maximum voltages based on thermodynamic relationships I 30
3.3. Anode potentials and enzyme potentials I 36
3.4. Role of communities versus enzymes in setting anode potentials I 40
3.5. Voltage generation by fermentative bacteria? I 41
12
29
4. POWERG ENERATION 44
4.1. Calculating power I 44
4.2. Coulombic and energy efficiency I 48
4.3. Polarization and power density curves I 50
vii
Contents
4.4. Measuring internal resistance I 54
4.5. Chemical and electrochemical analysis of reactors I 57
5. MATERIALS
5.1. Finding low-cost, highly efficient materials / 61
5.2. Anode materials I 62
5.3. Membranes and separators (and chemical transport through them) I 68
5.4. Cathode materials / 76
5.5. Long-term stability of different materials I 83
6. ARCHITECTURE
6.1. General requirements I 85
6.2. Air-cathode MFCs I 86
6.3. Aqueous cathodes using dissolved oxygen I 95
6.4. Two-chamber reactors with soluble catholytes or poised potentials / 97
6.5. Tubular packed bed reactors I 102
6.6. StackedMFCs I 104
6.7. Metal catholytes I 105
6.8. BiohydrogenMFCs I 108
6.9. Towards a scalable MFC architecture I 1 10
7. KINETICAS ND MASST RANSFER
7. I . Kinetic- or mass transfer-based models? / 1 1 1
7.2. Boundaries on rate constants and bacterial characteristics I 112
7.3. Maximum power from a monolayer of bacteria I 1 16
7.4. Maximum rate of mass transfer to a biofilm I 1 18
7.5. Mass transfer per reactor volume I 122
8. MECS FOR HYDROGENPR ODUCTION
8.1. Principle of operation I 125
8.2. MEC systems I 127
8.3. Hydrogen yield I 131
8.4. Hydrogen recovery I 132
8.5. Energyrecovery I 134
8.6. Hydrogen losses / 142
8.7. Differences between the MEC and MFC systems I 145
9. MFCS FOR WASTEWATER TREATMENT
9. I . Process trains for WWTPs I 146
9.2. Replacement of the biological treatment reactor with an MFC / 149
9.3. Energy balances for WWTPs I 154
9.4. Implications for reduced sludge generation I 157
9.5. Nutrient removal I 158
9.6. Electrogenesis versus methanogenesis I 159
Vlll
Contents
10. OTHERM FC TECHNOLOGIES
10.1. Different applications for MFC-based technologies / 162
10.2. Sediment MFCs / 162
10.3. Enhanced sediment MFCs / 166
10.4. Bioremediation using MFC technologies / 168
11. FUN!
1 1.1 MFCs for new scientists and inventors / I71
1 1.2 Choosing your inoculum and media / 174
1 1.3 MFC materials: electrodes and membranes / 175
1 1.4 MFC architectures that are easy to build / 176
11.5 MEC reactors / 180
1 1.6 Operation and assessment of MFCs / 18 1
12. OUTLOOK
MFCs yesterday and today / 182
Challenges for bringing MFCs to commercialization / 183
Accomplishments and outlook / 184
NOTATION
REFERENCES
INDEX 199