《Advances in Control System Technology for Aerospace Applications》
《Advances in Control System Technology for Aerospace Applications》航空航天控制系统技术进展
编者:
Eric Feron
School of Aerospace Engineering
Georgia Institute of Technology
出版社:Springer
出版时间:2016年
目录
1 Spacecraft Autonomy Challenges for Next-Generation
Space Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Joseph A. Starek, Behçet Açıkmeşe, Issa A. Nesnas
and Marco Pavone
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 High-Level Challenges and High-Priority
Technologies for Space Autonomous Systems . . . . . . 3
1.2 Relative Guidance Algorithmic Challenges for Autonomous
Spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Challenges and Future Directions . . . . . . . . . . . . . . . 11
1.3 Extreme Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.4 Challenges and Future Directions . . . . . . . . . . . . . . . 24
1.4 Microgravity Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.2 Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.3 State of the Art. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.4 Challenges and Future Directions . . . . . . . . . . . . . . . 35
1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2 New Guidance, Navigation, and Control Technologies
for Formation Flying Spacecraft and Planetary Landing . . . . . . . 49
Fred Y. Hadaegh, Andrew E. Johnson, David S. Bayard,
Behçet Açıkmeşe, Soon-Jo Chung and Raman K. Mehra
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
vii
2.2 GN&C Technologies for Planetary Landing in Hazardous
Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.2 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . 52
2.2.3 Case Study 1: Mars Robotic System . . . . . . . . . . . . . 53
2.2.4 Case Study 2: Crewed Lunar System. . . . . . . . . . . . . 55
2.2.5 System Comparison . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3 Phase Synchronization Control of Spacecraft Swarms . . . . . . . 58
2.3.1 Problem Statement—Controlling the Phase
Differences in Periodic Orbits. . . . . . . . . . . . . . . . . . 59
2.3.2 Phase Synchronization Control Law with Adaptive
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.3.3 Main Stability Theorems and Simulation Results . . . . 62
2.4 Application of Probabilistic Guidance to Swarms
of Spacecraft Operating in Earth Orbit. . . . . . . . . . . . . . . . . . 64
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.4.2 Probabilistic Guidance Problem . . . . . . . . . . . . . . . . 65
2.4.3 Probabilistic Guidance Algorithm (PGA) . . . . . . . . . . 66
2.4.4 Adaptation of PGA to Earth Orbiting Swarms . . . . . . 68
2.5 Nonlinear State Estimation And Sensor Optimization
Problems for Detection of Space Collision Events. . . . . . . . . . 70
2.5.1 LEO Sensor Constellation Design and Collision
Event Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.5.2 Satellite Collision Modeling and Estimation . . . . . . . . 73
2.6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3 Aircraft Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Piero Miotto, Leena Singh, James D. Paduano, Andrew Clare,
Mary L. Cummings and Lesley A. Weitz
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.1.1 Challenges to the Safe Integration of UAVs
in the National Airspace . . . . . . . . . . . . . . . . . . . . . 83
3.1.2 Technical Enhancements for Safe Insertion
of UAVs in the NAS . . . . . . . . . . . . . . . . . . . . . . . 84
3.2 On-Board Air Autonomy Systems Needs . . . . . . . . . . . . . . . . 86
3.2.1 Challenges to Integration of UAVs in the NAS . . . . . 86
3.2.2 Technical Enhancements for Improved In-Air
autonomy—Key Technologies . . . . . . . . . . . . . . . . . 87
3.2.3 Conclusions: A Road-Map to Address
the Technical Challenges . . . . . . . . . . . . . . . . . . . . . 89
3.3 Human-Automation Collaboration . . . . . . . . . . . . . . . . . . . . . 92
3.3.1 Challenges in the Collaborative Human-Automation
Scheduling Process . . . . . . . . . . . . . . . . . . . . . . . . . 92
viii Contents
3.3.2 Candidate Methods in Human-Automation
Collaborative Scheduling . . . . . . . . . . . . . . . . . . . . . 94
3.3.3 Technical Enhancements needed for Humans
Interactions with Scheduling Algorithms . . . . . . . . . . 95
3.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4 Autonomy Evolution for Air Traffic Control . . . . . . . . . . . . . 98
3.4.1 Challenges and Limitations of Current Air Traffic
Management System . . . . . . . . . . . . . . . . . . . . . . . . 99
3.4.2 Enhancements Made Within ATC System . . . . . . . . . 99
3.4.3 Technical Enhancements needed in the Evolution
of Airborne and Ground-Based Technologies . . . . . . . 101
3.4.4 Conclusions and Proposed Road-Map . . . . . . . . . . . . 103
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4 Challenges in Aerospace Decision and Control:
Air Transportation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Hamsa Balakrishnan, John-Paul Clarke, Eric M. Feron,
R. John Hansman and Hernando Jimenez
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Key NextGen Topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3 Supporting Technology Research Challenges . . . . . . . . . . . . . 111
4.3.1 Design of Automation with Graceful
Degradation Modes . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.2 System Verification and Validation (V&V) . . . . . . . . 112
4.3.3 Large-Scale, Real-Time Optimization Algorithms . . . . 113
4.3.4 Multi-Objective, Multi-Stakeholder, Optimization
Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4 Domain-Specific Research Challenges . . . . . . . . . . . . . . . . . . 114
4.4.1 Airport Arrival Management . . . . . . . . . . . . . . . . . . 114
4.4.2 Airport Departure Processes . . . . . . . . . . . . . . . . . . . 116
4.4.3 The Trip is Not Over: Passenger Management
in the Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4.4 Domain-Specific Contributions: Abstract Modeling
Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5 From Design to Implementation: An Automated,
Credible Autocoding Chain for Control Systems . . . . . . . . . . . . . 137
Timothy Wang, Romain Jobredeaux, Heber Herencia,
Pierre-Loïc Garoche, Arnaud Dieumegard, Éric Feron
and Marc Pantel
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2 Credible Autocoding Framework . . . . . . . . . . . . . . . . . . . . . 139
5.2.1 Input and Output Languages of the Framework . . . . . 141
Contents ix
5.3 Control Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.1 Control System Stability and Boundedness. . . . . . . . . 143
5.3.2 Prototype Tool-Chain . . . . . . . . . . . . . . . . . . . . . . . 143
5.3.3 Control Semantics in Simulink and Gene-Auto . . . . . . 144
5.3.4 Annotation Blocks and Behaviors in the Model . . . . . 146
5.3.5 Closed-Loop Stability with Bounded Input. . . . . . . . . 147
5.3.6 Expressing the Observer-Based Fault-Detection
Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.3.7 Control Semantics at the Level of the C Code . . . . . . 149
5.3.8 Closed Loop Semantics . . . . . . . . . . . . . . . . . . . . . . 150
5.3.9 Control Semantics in PVS . . . . . . . . . . . . . . . . . . . . 151
5.4 Autocoding with Control Semantics . . . . . . . . . . . . . . . . . . . 153
5.5 Building the Input Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.6 Basics of Program Verification . . . . . . . . . . . . . . . . . . . . . . . 154
5.6.1 Hoare Logic and Deductive Verification . . . . . . . . . . 156
5.6.2 Predicate Transformers . . . . . . . . . . . . . . . . . . . . . . 157
5.6.3 Strongest Post-condition . . . . . . . . . . . . . . . . . . . . . 159
5.7 Translation Process for a Simple Dynamical System . . . . . . . . 159
5.8 Gene-Auto+: A Prototype Credible Autocoder . . . . . . . . . . . . 161
5.8.1 Gene-Auto: Translation . . . . . . . . . . . . . . . . . . . . . . 161
5.8.2 Translation of Annotative Blocks . . . . . . . . . . . . . . . 162
5.9 Translation and Insertion of the System Block. . . . . . . . . . . . . 164
5.10 Translation of the Quadratic Blocks . . . . . . . . . . . . . . . . . . . 165
5.10.1 Types of Quadratic Blocks. . . . . . . . . . . . . . . . . . . . 165
5.10.2 Insertion of Ellipsoid Objects . . . . . . . . . . . . . . . . . . 165
5.11 Computing the Strongest Post-condition. . . . . . . . . . . . . . . . . 167
5.11.1 Affine Transformation . . . . . . . . . . . . . . . . . . . . . . . 168
5.11.2 S-Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.11.3 Verification of the Strongest Post-condition . . . . . . . . 172
5.12 Automatic Verification of Control Semantics . . . . . . . . . . . . . 172
5.12.1 From C Code to PVS Theorems . . . . . . . . . . . . . . . . 173
5.12.2 Theory Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 175
5.12.3 Generically Discharging the Proofs in PVS . . . . . . . . 176
5.12.4 The pvs-ellipsoid Plugin to Frama-C . . . . . . . . 177
5.12.5 Checking Inclusion of the Propagated Ellipsoid . . . . . 177
5.13 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.14 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
专业书籍
下载地址:(回复后可见)
**** Hidden Message ***** 下載收藏,謝謝分享! 谢谢分享。 好书 very good 谢谢 好书 灰常好!灰常感谢! 谢谢 非常的不错
页:
[1]
2