未来5年美国增材制造技术将"何去何从"?
2015年9月14日,国家增材制造创新机构发布了公开版的技术路线图,勾勒了未来5年的该机构乃至美国增材制造工业技术发展的路径。路线图包括设计、材料、工艺、价值链和增材制造基因组5个领域:图:技术路线图领域层
设计
包含3个子方向:生物启发设计与制造,产品与工艺设计辅助手段/程序,成本与能耗因素分析/建模。旨在开发可共享的设计方法与工具,变革设计理念,使增材制造零件设计打破固有流程。设计领域要提出填补差距的解决方案,避免受到当前CAD/CAM/CAE/PLM工具和设计思维的约束,它们是为常规制造工艺开发的,因此从根本上存在局限。领域关注点和相关影响分析指标包括:复杂度开发,3D功能梯度材料,多材料集成,基于模型的检测,产品个性化与定制化。
图:设计子方向的成熟化需求
材料
包含3个子方向:“非特定”增材制造技术包,材料性能表征,下一代材料。旨在围绕增材制造性能表征基准,构建知识体系,消除成品材料性能的波动。材料领域要构建一个范本,以微尺度层面上对增材制造工艺的物理学控制,代替工艺参数和成品微结构控制,完全按照设计实现一致的、可重复的产品微结构和性能。领域关注点和相关影响分析指标包括:标准化的原材料,基准材料性能数据,“工艺-性能-结构”关系,工艺窗口边界定义,后处理指南与规范。
图:材料子方向的成熟化需求
工艺
包含3个子方向:多材料输送与沉积系统,下一代机床,工艺温度梯度控制。旨在提升增材制造机床的速度、精度和细节分辨率,并且适应大批量生产,提高成品零件质量。工艺领域要开发“机床级”工艺性能提升所需的关键技术和相关子系统,类似于柔性制造系统。领域关注点和相关影响分析指标包括:制造速度,精度,细节制造能力,表面质量,最大零件尺寸。
图:工艺子方向的成熟化需求
价值链
包含6个子方向:先进感知与探测手段,数字线集成,智能机床控制方法,快速检测技术,修理技术,标准/模式/协议。旨在逐渐降低端到端价值链成本,缩短增材制造产品的上市时间。价值链领域要开发快速合格鉴定/认证方法,以及从全盘角度,在整个产品寿命周期中集成相关技术,包括材料和产品可回收性。这一领域已经在国防部ManTech计划先进制造企业(AME)投资科目中被确认为构建单一集成数字线的首要关注点,可以帮助确认所需的工人技能和使能手段,以及凸显面向快速设计与检测的新技术需求,比如提高生产率的设计辅助手段和计算机程序。领域关注点和相关影响分析指标包括:工艺成本,原材料成本,质量控制成本,工人生产率成本,能量效率成本。
图:供应链子方向的成熟化需求
增材制造基因组
包含3个子方向:基准验证用户案例,模型辅助的性能预测,基于物理学的建模与仿真。旨在逐渐减少增材制造新材料设计、开发与合格鉴定所需的成本和时间。基因组领域要开发新的计算方法,比如基于物理学的和模型辅助的材料性能预测工具;开发验证计算预测方法所需的基准数据集;针对增材制造的每个新材料-工艺组合,开发材料性能表征的新概念,打破设计容许值的传统开发路线。领域关注点和相关影响分析指标与美国国家材料基因组计划相似,包括:计算机辅助材料开发,模块化开放式仿真架构,访问透明化的材料性能数据,多尺度数据管理和共享,高效的材料性能表征方法。
图:增材制造基因组子方向的成熟化需求
五个子方向的成熟化需求
领域
子方向
成熟化需求
设
计
生物启发设计与制造
用于Ti-64合金直接金属激光烧结的蜂窝有限元分析技术模型
用于蜂窝结构的高效结构分析算法
成本与能耗因素分析/建模
Ti-64合金直接金属激光烧结工艺的生产成本建模
Ti-64合金电子束熔化工艺的生产成本建模
“摇篮到摇篮”寿命周期能耗建模
产品/工艺族能耗建模
产品与工艺设计辅助手段/程序
熔融沉积成形的ULTEM 9085工装设计指南
选区激光烧结的碳纤维增强静电释放聚醚酮酮拓扑优化指南
集成的增材制造和二次加工支持指南
熔融沉积成形的ULTEM 9085零件设计和制造路径指南
可连接CAD的专家设计顾问
基于规则的面向制造的设计(DFM)方法与算法
设计规范询问算法
工艺/材料/机床一致性的自动生成
推荐快速合格鉴定/认证手段的设计顾问
材
料
“非特定”增材制造技术包
Ti-64和Co-Cr的电子束熔化工艺验证工艺路线图
Ti-64和Co-Cr的直接金属激光烧结工艺验证工艺路线图
Ti-64和IN718的激光近净成形工艺窗口表征
面向超声无损检测的电子束定向能沉积的Ti-64微结构
材料性能表征
熔融沉积成形的ULTEM 9085 B基设计许用值
选区激光烧结的碳纤维增强静电释放聚醚酮酮B基设计许用值
选区激光烧结的聚醚酮酮表征
选区激光烧结的Cu表征
电子束熔化的Ti-64和Co-Cr给料与性能的关系
直接金属激光烧结的Ti-64和Co-Cr给料与性能的关系
电子束熔化的Ti-64和Co-Cr丝线给料对微结构的影响
直接金属激光烧结的Ti-64和Co-Cr丝线给料对微结构的影响
电子束熔化的Ti-64 B基设计许用值开发
下一代材料
选区激光烧结的碳纤维增强静电释放聚醚酮酮可回收性指南
低成本循环利用的Al材料规范
锻造工具耐磨涂层指南
生物相容/生物可吸收的黏合剂喷射Fe-Mn材料
材料可回收性指标
工
艺
多材料输送与沉积系统
3D梯度材料沉积控制
工艺温度梯度控制
工艺温度实时分析方法
下一代机床
模块化激光近净成形机床翻新系统
低成本循环利用的Al材料桌面打印机
微电感烧结试验台
高产出的Ni和Ti激光热丝线工艺
增材与减材混合系统
开源可编程逻辑控制架构
供
应
链
先进感知与探测手段
用于电子束熔化和激光近净成形工艺的多传感器热成像系统
热成像数据的3D可视化手段
激光粉末床熔融工艺缺陷的原位监测传感器试验台
激光粉末床熔融热塑性塑料的红外成像
数字线集成
面向增材与二次加工集成的基于模型的企业(MBE)的手段
“设计VS制造”公差的实时比较
智能机床控制方法
工艺路线图微结构控制算法
变形补偿控制算法
集成的增材与二次加工控制
激光粉末床熔融热塑性塑料的热成像控制
基于模型的闭环反馈控制算法
快速检测技术
逐层的3D质量认证
超合金激光粉末床熔融的原位质量保证手段
激光粉末床熔融的无损评估后检测
Ti和Ni合金的X射线CT无损检测程序
修理技术
H13模铸工装修理与翻新指南
激光粉末定向能零件修理方法
标准/图表/协议
国家标准与技术研究院的轮询调度协议
激光粉末床熔融工艺控制的开放协议
电子束定向能沉积的Ti-64超声无损检测协议
数据存储卡目录与族谱
工业专用合格鉴定/认证协议
第三方数据记录模板
共享数据的存储模式
增
材
制
造
基
因
组
基准验证用户案例
电子束定向能沉积的Ti-64超声无损检测试样
Ti和Ni合金的X射线CT无损检测参考试样
模型辅助的性能预测
集成计算材料工程和数据存储静态模型链接
基于物理学的建模与仿真
电子束熔化的Al材工艺建模
激光粉末床熔融的Al材工艺建模
直接金属激光烧结工艺数值仿真方法
激光近净成形的Ti-64 ABAQUS有限元分析设置脚本
激光粉末床熔融的Ni,Co和Ti变形建模
PS:不是太懂,转给看得懂的人
页:
[1]