《Non-identifier Based Adaptive Control in Mechatronics: Theory and Applicat...
《Non-identifier Based Adaptive Control in Mechatronics: Theory and Application》基于无标识的机电一体化自适应控制:理论与应用
作者:
Christoph M. Hackl
Munich School of Engineering
Technical University of Munich
出版社:Springer
出版时间:2017年
目录
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Part I Introduction
1 Motivation and Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Brief Historical Overview of Control Systems, Mechatronics
and Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Feedback Control and Adaptive Control. . . . . . . . . . . . . . . . . . . 9
2.2 Mechatronics and Motion Control . . . . . . . . . . . . . . . . . . . . . . . 15
3 Problem Statement for Mechatronic Systems . . . . . . . . . . . . . . . . . . 19
3.1 The Non-identifier Based Adaptive Motion Control
Problem in Mechatronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The Generalized Non-identifier Based Adaptive Control
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Considered Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Control Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Admissible Reference Signals . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Measurement Noise and Measurement Errors . . . . . . . . 26
4 Contributions of this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Part II Theory
5 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 Norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.1 Vector Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2 Induced Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.3 Some More Facts on Vector and Induced Matrix
Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
. . .
5.2 Function Properties and Function Spaces . . . . . . . . . . . . . . . . . . 37
5.2.1 Continuity and Uniform Continuity . . . . . . . . . . . . . . . . 38
5.2.2 Differentiable and Lipschitz Continuous Functions . . . . 40
5.2.3 Lebesgue Measure Theory and Lp-Spaces. . . . . . . . . . . 44
5.2.4 Barbălat’s Lemma and Its Generalization . . . . . . . . . . . 60
5.3 Solutions of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Solutions of Ordinary Differential Equations . . . . . . . . . 61
5.3.2 Solutions in the Sense of Carathéodory. . . . . . . . . . . . . 63
5.3.3 Solutions of Functional Differential Equations. . . . . . . . 65
5.3.4 Some Useful Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Linear Time-Invariant Single-Input Single-Output Systems . . . . 68
5.4.1 System Representations . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.3 Realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.4 Relative Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.5 High-Frequency Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.6 Minimum-Phase Systems. . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.7 Byrnes-Isidori Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.8 Zero Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.9 Controllable Canonical Form. . . . . . . . . . . . . . . . . . . . . 91
5.4.10 Root Locus Center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Some Operator Examples of Operator Class T . . . . . . . . . . . . . . 98
5.5.1 Nonlinear Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.2 Linear Time-Invariant Systems . . . . . . . . . . . . . . . . . . . 99
5.5.3 Input-to-State Stable Single-Input Single-Output
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.5.4 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6 High-Gain Adaptive Stabilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1.1 An Illustrative Example. . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1.2 The Root Locus Method: An Alternative
Motivation for High-Gain Output Feedback
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Brief Historical Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Relative-Degree-One Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.1 System Class Slin
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.2 Byrnes-Isidori Form for System Class Slin
1 . . . . . . . . . . 119
6.3.3 High-Gain Adaptive Controller . . . . . . . . . . . . . . . . . . . 119
6.3.4 Implementation and Simulation Results. . . . . . . . . . . . . 126
6.4 Relative-Degree-Two Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4.1 System Class Slin
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4.2 Byrnes-Isidori Form for System Class Slin
2 . . . . . . . . . . 127
6.4.3 High-Gain Adaptive Controllers . . . . . . . . . . . . . . . . . . 128
6.4.4 Implementation and Simulation Results. . . . . . . . . . . . . 145
7 High-Gain Adaptive Tracking with Internal Model . . . . . . . . . . . . . 149
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 Principle Idea: Serial Interconnection of Internal Model
and High-Gain Stabilizable System. . . . . . . . . . . . . . . . . . . . . . . 151
7.2.1 Analysis in the Frequency Domain . . . . . . . . . . . . . . . . 152
7.2.2 Analysis in the Time Domain . . . . . . . . . . . . . . . . . . . . 153
7.3 Internal Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.3.1 Admissible Reference Signals . . . . . . . . . . . . . . . . . . . . 155
7.3.2 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.3.3 Exemplary Design and Discussion. . . . . . . . . . . . . . . . . 157
7.4 Relative-Degree-One Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.5 Relative-Degree-Two Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.6 Implementation and Simulation Results . . . . . . . . . . . . . . . . . . . 164
8 Adaptive ‚-Tracking Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.2 Brief Historical Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.3 Relative-Degree-One Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.3.1 System Class S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.3.2 Bynres-Isidori Like Form for System Class S1 . . . . . . . 176
8.3.3 Adaptive ‚-Tracking Controller. . . . . . . . . . . . . . . . . . . 176
8.3.4 Implementation and Simulation Results. . . . . . . . . . . . . 187
8.4 Relative-Degree-Two Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.4.1 System Class S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.4.2 Byrnes-Isidori Like Form for System Class S2 . . . . . . . 190
8.4.3 Adaptive ‚-Tracking Controllers . . . . . . . . . . . . . . . . . . 191
8.4.4 Implementation and Simulation Results. . . . . . . . . . . . . 211
9 Funnel Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.2 Brief Historical Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.3 Relative-Degree-One Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.3.1 System Class Ssat
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.3.2 Byrnes-Isidori Like Form for System Class Ssat
1 . . . . . . 225
9.3.3 Performance Funnel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.3.4 Funnel Controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.3.5 Implementation and Simulations Results . . . . . . . . . . . . 248
9.4 Relative-Degree-Two Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 251
9.4.1 System Class Ssat
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
9.4.2 Byrnes-Isidori Like Form for System Class Ssat
2 . . . . . . 253
9.4.3 Performance Funnel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
9.4.4 Funnel Controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
9.4.5 Implementation and Simulation Results. . . . . . . . . . . . . 281
10 Non-identifier Based Adaptive Control with Internal Model . . . . . . 287
10.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
10.2 Brief Historical Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
10.3 Non-identifier Based Adaptive Control with Internal Model
for Unsaturated Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
10.4 Funnel Control with Internal Model and Anti-windup
for Saturated Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
10.4.1 Conditional Integration: A Simple Anti-windup
Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
10.4.2 IM-Funnel Control with Anti-windup for Systems
of Class Ssat
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
10.4.3 IM-Funnel Control with Derivative Feedback
and Anti-windup for Systems of Class Ssat
2 . . . . . . . . . . 308
10.5 Implementation and Simulation Results . . . . . . . . . . . . . . . . . . . 314
Part III Application
11 Speed and Position Control of Industrial Servo-Systems . . . . . . . . . 321
11.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
11.1.1 Micro-Processor (Real-Time System) . . . . . . . . . . . . . . 323
11.1.2 Electrical Drive (Actuator). . . . . . . . . . . . . . . . . . . . . . . 323
11.1.3 Mechanics (Physical System) . . . . . . . . . . . . . . . . . . . . 327
11.1.4 Speed and Position Sensors (Instrumentation) . . . . . . . . 327
11.1.5 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
11.1.6 Models of Stiff and Flexible Industrial
Servo-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
11.1.7 Laboratory Setup: Coupled Industrial
Servo-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
11.2 Motion Control in Industry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
11.2.1 Standard Control Methods. . . . . . . . . . . . . . . . . . . . . . . 358
11.2.2 Advanced Control Methods. . . . . . . . . . . . . . . . . . . . . . 363
11.2.3 Friction Identification and Compensation. . . . . . . . . . . . 364
11.3 Non-identifier Based Adaptive Speed Control of Industrial
Servo-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
11.3.1 Reduced-Order One-Mass System of Class Ssat
1 . . . . . . . 366
11.3.2 Reduced-Order Two-Mass System of Class Ssat
1 . . . . . . 368
11.3.3 Two-Mass System with Disturbance Observer
of Class Ssat
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
11.3.4 Implementation, Experiments and Measurement
Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
11.4 Non-identifier Based Adaptive Position Control
of Industrial Servo-Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
11.4.1 One-Mass System of Class Ssat
2 . . . . . . . . . . . . . . . . . . . 402
11.4.2 Two-Mass System of Class Ssat
2 . . . . . . . . . . . . . . . . . . 403
11.4.3 Implementation, Experiments and Measurement
Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
12 Speed Control of Wind Turbine Systems . . . . . . . . . . . . . . . . . . . . . 435
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
12.1.1 Wind Energy: The White Hope
of the “Energiewende” . . . . . . . . . . . . . . . . . . . . . . . . . 435
12.1.2 Evolution of Wind Turbine Systems . . . . . . . . . . . . . . . 437
12.1.3 Modern Wind Turbine Systems. . . . . . . . . . . . . . . . . . . 440
12.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
12.2.1 Wind Power and Power Coefficient. . . . . . . . . . . . . . . . 445
12.2.2 Aerodynamic Turbine Torque . . . . . . . . . . . . . . . . . . . . 448
12.2.3 Dynamic Models of Wind Turbine Systems
with Rigid and Elastic Drive Train . . . . . . . . . . . . . . . . 451
12.3 Speed Funnel Control of Wind Turbine Systems . . . . . . . . . . . . 454
12.3.1 Speed Funnel Control of Wind Turbine Systems
with Rigid Shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
12.3.2 Speed Funnel Control of Wind Turbine Systems
with Elastic Shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
13 Joint Position Control of Rigid-Link Revolute-Joint
Robotic Manipulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
13.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
13.2 Joint Position Funnel Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
13.2.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
13.2.2 Control Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
13.2.3 MIMO Performance Funnel. . . . . . . . . . . . . . . . . . . . . . 474
13.2.4 MIMO Funnel Controller . . . . . . . . . . . . . . . . . . . . . . . 475
13.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
13.3.1 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
13.3.2 Measurement Results. . . . . . . . . . . . . . . . . . . . . . . . . . . 491
14 Current Control of Electric Synchronous Machines . . . . . . . . . . . . . 495
14.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
14.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
14.2.1 Matrix/Vector Notation for Three-Phase Systems . . . . . 498
14.2.2 Balanced or Symmetric Three-Phase Signal
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
14.2.3 Wye (Star) and Delta Connected Three-Phase
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
14.2.4 Space Vector Theory in Matrix/Vector Notation . . . . . . 503
14.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
14.3.1 Generic Model of Two-Level Voltage Source
Inverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
14.3.2 Generic Model of Synchronous Machines . . . . . . . . . . . 522
14.4 Current PI-Funnel Control of Synchronous Machines. . . . . . . . . 534
14.4.1 Multiple-Input Multiple-Output PI-Funnel Control
with Anti-windup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
14.4.2 Reduced-Order System Models . . . . . . . . . . . . . . . . . . . 539
14.4.3 Current PI-Funnel Control of Electrical Drive
System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
14.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
14.5.1 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
14.5.2 Measurement Results. . . . . . . . . . . . . . . . . . . . . . . . . . . 556
Part IV Conclusion
15 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
16 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
Part V Problems and Solutions
17 Function Properties and Function Spaces . . . . . . . . . . . . . . . . . . . . . 569
17.1 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
17.2 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
18 Existence and Uniqueness of Solutions . . . . . . . . . . . . . . . . . . . . . . . 587
18.1 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
18.2 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
19 System Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
19.1 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
19.2 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
20 Internal Model Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
20.1 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
20.2 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
21 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
21.1 Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
21.2 Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
专业书籍
下载地址:(回复后可见)
**** Hidden Message ***** 谢谢分享。 xiexie 谢谢 灰常好!灰常感谢! 谢谢 棒棒哒 感谢分享 楼主好人,一生平安 感谢楼主的分享
页:
[1]
2