《Electrochemical Processes in Fuel Cells》
《Electrochemical Processes in Fuel Cells》燃料电池中的电化学过程
作者:Manfred W. Breiter
出版社:Springer
出版时间:1969年
目录
I. Introduction. . . . . . . . . . . . . .
1. Definition and Description of a Fuel Cell
2. Classification of Fuel Cells
3. Historical Development.
References
II. General Aspects
1. Thermodynamic Considerations and Definitions
2. Efficiency of Galvanic Cells· . . . . . . .
3. Basic Requirements for a Practical Fuel Cell
4. Electrolytes . . . . .
References . . . . .
III. Mass Transport Processes
1. Concept of the Nernst Diffusion Layer
2. Convective Diffusion . . . . . . .
3. Migration and Convective Diffusion .
References . . . . . . . . . . . .
IV. Kinetics of Electrode Reactions on Homogeneous Surfaces
and Influence of Electrode Material . . . . . . . 19
1. Single Step Reaction . . . . . . . . . . . . . .. 19
2. Two Step Reaction with Adsorbed Intermediate . .. 22
3. Successive Electrode Reactions with One Rate-Determining
Step . . . . . . . . . . . . . . . . . . . . . 29
4. Some Features of Mechanisms Involving the Simultaneous
Formation of Different Products . . . . . . . . . . . 32
5. Correlation between Hydrogen Overvoltage and Free
Energy of Hydrogen Adsorption . . . . . . 38
References . . . . . . . . . . . . . . . 40
V. Electrode Reactions on Heterogeneous Surfaces. 42
1. Structure and Composition of Surfaces of Solids 42
2. Current Distribution on Heterogeneous Surfaces 43
3. Approximate Kinetic Expressions for Electrocatalytic
Reactions on Heterogeneous Surfaces . 44
References . . . . . . . . . . . . . . . . . . . . 47
VI Contents
VI. Characterization of the Surface of Platinium Metals and Platinum
Metal Alloys by Hydrogen Adsorption and Comparison
of the Results with Other Techniques . . . . . . . . .. 48
1. Electrochemical Determination of Isotherms of Hydrogen
Adsorption. . . . . . . . . . . . . . . . . . . . 48
2. Heat of Hydrogen Adsorption as a Function of Coverage 52
3. Langmuir Approximation of the Isotherms of Hydrogen
Adsorption . . . . . . . . . . . . . . . . . . . . 55
4. Influence of Surface Structure on Hydrogen Adsorption at
Platinum . . . . . . . . . . . . . . . . . . . . . 57
5. Determination of the Electrochemically Active Surface 60
6. Hydrogen Adsorption in the Presence of Chemisorbed Carbonaceous
Species . . . . . . . . . . . . . . . .. 62
7. Effect of Pretreatment on the Reactivity of Platinum Metal
Electrodes . . . . . . . . . . . . . . . . . . . . 66
8. Hydrogen Adsorption on Binary Platinum Metal Alloys. 71
References . . . . . . . . . . . . . . . . . . . . 75
VII. Anodic Oxidation of Molecular Hydrogen at Low Temperatures
78
1. Mechanism of the H2 Oxidation on Noble Metals and Noble
Metal Alloys . . . . . . . . . . . . . . . . . . . 78
2. Mechanism of the H2 Oxidation on Different Types of
Nickel Electrodes in Alkaline Electrolytes . . . . . . . 84
3. Mechanism of the H2 Oxidation on Platinum in Contact
with an Ion-Exchange Membrane. . . . . . . . . . . 88
References . . . . . . . . . . . . . . . . .. . . 89
VIII. Oxygen Layers on Different Materials and Inhibition of Fuel
Oxidations . . . . . . . . . . . . . . . . . . . .. 91
1. Formation and Reduction of Oxygen Layers on Platinum
Metals and Some Alloys . . . . . . . . . . . 91
2. Nature of the Oxygen Layers on Platinum Metals. 94
3. Oxygen Layers on Nickel in Alkaline Electrolytes. 97
4. Oxygen Layers on Silver in Alkaline Electrolytes 101
5. Oxygen Layers on Carbon. . . . . . . . . . 103
6. Inhibition of Fuel Oxidations by Oxygen Layers 105
References . . . . . . . . . . . . . . . . 108
IX. Adsorption of Carbonaceous Species on Platinum Metals 112
1. Non-EquilibriumAspects of the Chemisorption of Strongly
Bonded Carbonaceous Species . . . . . . . . .. 112
2. Adsorption of Weakly Bonded Carbonaceous Species 113
Contents VII
3. Rate of Formation of Strongly Bonded Species at Constant
Potential . . . . . . . . . . . 115
4. Coverage from Anodic Pulses. . . . . . . 118
5. Coverage from Hydrogen Deposition 123
6. Radiometric Determination of the Coverage 126
7. Coverage and Capacitance of Electrode Impedance 128
8. Determination of the Number of Electrons in the Oxidation
of Chemisorbed Species. . . . 132
9. Effect of pH and Anions on Coverage ........ 134
to. Nature of Chemisorbed Species . . . . . . . . . . . 136
11. Oxidation Mechanism of Chemisorbed Carbonaceous
Species . . . . . . . . . . . . . . . . 141
References . . . . . . . . . . . . . . . 144
X. Anodic Oxidation of Fuels at Low Temperatures 147
1. Classification of the Oxidation Mechanisms. 147
2. Oxidation of Carbon Monoxide. . . . . . 148
3. Oxidation of Mixtures of Hydrogen and Carbon Monoxide 156
4. Oxidation of Formic Acid . . . . . . . . 157
5. Methanol Oxidation. . . . . . . . . . . 165
6. Oxidation of Higher Alcohols and Aldehydes 168
7. Oxidation of Hydrocarbons . . . . . . . 171
8. Oxidation of Hydrazine . . . . . . . . . 176
9. Oscillatory Phenomena on Solid Electrodes. 179
References . . . . . . . . . . . . . 181
XI. The Oxygen Electrode at Low Temperatures 185
1. Distinction of Reduction Mechanisms. 185
2. The Role of Hydrogen Peroxide in the Oxygen Reduction
on Platinum Metals 188
3. Mechanism of the O2 Reduction on Active Platinum
Metals in the Absence of the Oxygen Layer 198
4. The O2 Reduction on Platinum Metals in the Presence of
Oxygen Layers 199
5. The 02 Reduction on Silver, Nickel, and Silver Alloys. 200
6. The O2 Reduction on Carbon 203
7. The O2 Reduction on Intermetallic Compounds 205
8. The Reversible Oxygen Electrode. 206
References 208
XII. Corrosion of Electrodes at Low Temperatures 211
1. Predictions from Potential-pH Diagrams 211
2. Dissolution of Platinum Metals 213
VIII Contents
3. Dissolution of Nickel, Silver, and Carbon in Alkaline
Electrolytes . . . . . . . . . . . . . . . . . . . . 214
References . . . . . . . . . . . . . . . . . . . . 215
XIII. Processes in Fuel Cells with Molten Carbonate Electrolytes 217
XIV.
XV.
1. General Considerations. . . . . . . . . . . . . . . 217
2. Properties of Molten Carbonate Electrolytes. . . . . . 219
3. Thermal Stability of Molten Carbonates and Corrosion of
Metals . . . . . . . . . . . 220
4. Formation of Carbon Deposits. . . . . . . 223
5. Processes at the Anode . . . . . . . . . . 224
6. The Oxygen Electrode in Molten Carbonates. 226
References . . . . . . . . . . . . . . 228
Processes in Fuel Cells with Solid Electrolytes
1. General Considerations. . . . .
2. Properties of Solid Electrolytes. .
3. Current-Voltage Characteristics
References . . . . . . . .
Properties of Porous Electrodes
1. Porosity . . . . . . . . .
2. Determination of Different Surface Areas
3. Experimental Current-Potential Curves for Porous
Electrodes . . . . . . .
4. Structure and Performance
References
XVI. Models of Porous Electrodes. 254
1. Potential Distribution in the Flooded Single Pore without
Influence of Mass Transport Processes . . . . . . . . 254
2. Concentration Distribution in the Flooded Single Pore
under the Influence of Diffusion . . . . . . . . . . . 258
3. Potential Distribution in the Flooded Single Pore in the
Presence of Mass Transport Processes . . . . .. 260
4. Continuum Models of Flooded Porous Electrodes 261
5. The Thin Film Model of the Gas-Diffusion Electrode 263
6. The Meniscus Model of the Gas-Diffusion Electrode 266
7. Simultaneous Consideration of Thin Film and Meniscus. 267
8. Model for the Two-Layer Electrode. 267
References 268
Subject Index 271
专业书籍
下载地址:(回复后可见)
**** Hidden Message ***** 谢谢分享。 谢谢 经典资料,学习了 楼主棒棒哒 棒棒哒 好资料,谢谢楼主分享 楼主好人,一生平安 非常感谢分享,下载学习了 非常感谢分享,下载学习了
页:
[1]
2