《Electrocatalysis of Direct Methanol Fuel Cells:From Fundamentals to Appl...
《Electrocatalysis of Direct Methanol Fuel Cells:From Fundamentals to Applications》直接甲醇燃料电池电催化:从基础到应用
编者:
Dr. Hansan Liu
Dr. Jiujun Zhang
National Research Council Canada
Institute for Fuel Cell Innovation
出版社:WILEY
出版时间:2009年
目录
Preface XV
List of Contributors XIX
1 Direct Methanol Fuel Cells: History, Status and Perspectives 1
Antonino Salvatore Aricò, Vincenzo Baglio, and Vincenzo Antonucci
1.1 Introduction 1
1.2 Concept of Direct Methanol Fuel Cells 2
1.2.1 Principles of Operation 2
1.2.1.1 DMFC Components 2
1.2.1.2 DMFC Operation Mode 3
1.2.1.3 Fuel Cell Process 3
1.2.2 Performance, Efficiency and Energy Density 4
1.2.2.1 Polarization Curves and Performance 4
1.2.2.2 Fuel Utilization 5
1.2.2.3 Cathode Operating Conditions 7
1.2.2.4 Heat Production 8
1.2.2.5 Cell Efficiency 9
1.2.2.6 Energy Density 9
1.3 Historical Aspects of Direct Methanol Fuel Cell Development
and State-of-the-Art 10
1.3.1 Historical Development of Methanol Oxidation Catalysts 10
1.3.2 Status of Knowledge of Methanol Oxidation Process and
State-of-the-Art Anode Catalysts 14
1.3.2.1 Oxidation Mechanism 14
1.3.2.2 Pt-Ru Catalysts 15
1.3.2.3 Alternative Anode Formulations 19
1.3.2.4 Practical Anode Catalysts 19
1.3.2.5 Anode Catalysts for Alkaline DMFC Systems 20
1.3.3 Technological Advances in Electrolyte Development for DMFCs 21
1.3.4 State-of-the-Art DMFC Electrolytes 24
1.3.4.1 General Aspects of DMFC Electrolyte Development 24
Electrocatalysis of Direct Methanol Fuel Cells. Edited by Hansan Liu and Jiujun Zhang
Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527–32377-7
V
1.3.4.2 Proton Conducting Membranes 24
1.3.4.3 Membranes for High Temperature Applications 26
1.3.4.4 Alkaline Membranes 29
1.3.4.5 Effects of Crossover on DMFC Performance and Efficiency 32
1.3.5 Historical Development of Oxygen Electroreduction in DMFCs 33
1.3.6 Status of Knowledge of Oxygen Reduction Electrocatalysis and
State-of-the-Art Cathode Catalysts 33
1.3.6.1 Oxygen Reduction Process 33
1.3.6.2 Pt-Based Catalysts and Non-noble Metal Electrocatalysts 35
1.3.6.3 Alternative Cathode Catalysts 37
1.3.7 DMFC Power Sources in the Pre-1990 Era 39
1.4 Current Status of DMFC Technology for Different
Fields of Application 40
1.4.1 Portable Power Sources 40
1.4.2 Transportation 53
1.4.3 Technology Development 60
1.4.3.1 DMFC Technology 60
1.4.3.2 Catalyst Preparation 61
1.4.3.3 Electrode Manufacturing and Membrane Electrode
Assemblies Membrane Electrode Assembly (MEAs) 61
1.4.3.4 Stack Hardware and Design 62
1.4.3.5 DMFC Systems 64
1.5 Perspectives of Direct Methanol Fuel Cells and
Techno-Economical Challenges 65
References 70
2 Nanostructured Electrocatalyst Synthesis: Fundamental
and Methods 79
Nitin C. Bagkar, Hao Ming Chen, Harshala Parab, and Ru-Shi Liu
2.1 Introduction 79
2.2 Fundamental Understanding of the Structure–Activity Relationship 80
2.2.1 Particle Size Effect 81
2.2.2 Crystal Facet Effect 82
2.3 Synthetic Methods of Conventional Carbon-Supported Catalysts 85
2.3.1 Impregnation Method 87
2.3.2 Colloidal Method 88
2.3.2.1 Polyol Synthesis 89
2.3.3 Microemulsion Method 93
2.4 Synthetic Methods of Novel Unsupported Pt Nanostructures 95
2.4.1 Template-Based Synthesis 95
2.4.1.1 Soft Template 96
2.4.1.2 Hard Template 96
2.4.2 Galvanic Replacement Reaction 99
2.4.2.1 Platinum Nanospheres 99
2.4.2.2 Platinum Nanotubes 99
VI Contents
2.4.2.3 Nanoporous Platinum 101
2.4.2.4 Hollow Platinum Nanochannels 102
2.4.2.5 Bimetallic Clusters 103
2.4.3 Electrochemical Synthesis 104
2.4.3.1 Spherical Platinum Clusters 104
2.4.3.2 Nanoporous Platinum 105
2.4.3.3 Tetrahexahedral Platinum Nanostructures 106
2.5 Conclusions 108
References 110
3 Electrocatalyst Characterization and Activity Validation – Fundamentals
and Methods 115
Loka Subramanyam Sarma, Fadlilatul Taufany, and Bing-Joe Hwang
3.1 Introduction 115
3.2 Direct Methanol Fuel Cells – Role of Electrocatalysts 117
3.2.1 Role of Anode Electrocatalysts – Methanol Oxidation
Reaction (MOR) 118
3.2.2 Role of Cathode Electrocatalysts – Oxygen Reduction
Reaction (ORR) 119
3.3 Characterization Techniques for Anode and Cathode Catalysts 121
3.3.1 Fundamental Aspects 121
3.3.2 Evaluation of Catalyst Crystallite Size, Elemental Composition,
Morphology, Dispersion 122
3.3.2.1 X-ray Diffraction (XRD) 122
3.3.2.2 Transmission Electron Microscopy (TEM) 124
3.3.2.3 Scanning Electron Microscopy (SEM) 125
3.3.2.4 Atomic Force Microscopy (AFM) 125
3.3.2.5 Energy Dispersive X-ray Spectroscopy (EDS/EDX) 125
3.3.3 Elucidation of Nanostructural Characteristics of Electrocatalysts –
Alloying Extent or Atomic Distribution, Electronic Structural
Features, State of Catalyst Species, Surface Composition,
Segregation Phenomena 126
3.3.3.1 X-ray Absorption Spectroscopy 126
3.3.3.2 X-ray Photoelectron Spectroscopy (XPS) 132
3.3.3.3 Electrochemical-Nuclear Magnetic Resonance Spectroscopy
(EC-NMR) 133
3.3.3.4 Low-Energy Electron Diffraction (LEED) 134
3.3.3.5 Auger Electron Spectroscopy (AES) 134
3.3.3.6 Low-Energy Ion Scattering (LEIS) 135
3.3.3.7 Temperature Programmed Reduction (TPR) 135
3.4 Evaluation of Electrocatalyst Activity, Electrochemical Active Surface
Area, Catalyst – Adsorbate Interactions, and Activity Validation
Techniques 136
3.4.1 Cyclic Voltammetry (CV) 136
3.4.1.1 Applications 137
Contents VII
3.4.1.2 State of the Pt-Based Catalysts 137
3.4.1.3 Qualitative Indicator for the Activity of Pt-Based Catalysts
Towards ORR 139
3.4.1.4 Qualitative Indicator for the Activity of Pt-Based Catalysts
Towards MOR 139
3.4.1.5 Reversibility of Hads/des Reaction and Roughness Factor (RF)
of Pt-Based Catalysts 140
3.4.1.6 Electrochemical Active Surface Area (ECASA) and Particle Size
of Pt-Based Catalysts 140
3.4.2 Adsorptive CO-Stripping Voltammetry (COads-SV) 141
3.4.3 Underpotential Deposition (UPD) 143
3.4.3.1 Surface Composition of Pt-Based Catalysts Through the
Cu-UPD method 145
3.4.4 Rotating Disk Electrode (RDE) 146
3.4.5 Rotating Ring-Disk Electrode (RRDE) Method 148
3.4.6 Linear Sweep Voltammetry (LSV) 149
3.5 Conclusions and Outlook 155
References 156
4 Combinatorial and High Throughput Screening of
DMFC Electrocatalysts 165
Rongzhong Jiang and Deryn Chu
4.1 Introduction 165
4.2 Common Procedures for the Development of DMFC Catalysts 168
4.3 General Methods for Combinatorial and High
Throughput Screening 169
4.4 Methods of Combinatorial Synthesis 171
4.4.1 Chemical Synthesis 171
4.4.2 Electrochemical Synthesis 173
4.4.3 Physical Synthesis 174
4.5 Electrode Arrays for High Throughput Screening 175
4.5.1 Direct Electrode Array and Automated Screening Method 175
4.5.2 Material Spot Array on a Single Electrode and Optical
Screening Method 177
4.5.3 Indirect Electrode Array on a Single Conductive Substrate and
Electrolyte Probe Screening Methods 179
4.6 Other Screening Methods for Catalyst Discovery 182
4.6.1 Infrared (IR) Thermography 183
4.6.2 Scanning Mass Spectrometry 183
4.6.3 Scanning Electrochemical Microscope (SECM) 185
4.7 Combinatorial Methods for DMFC Evaluation and Data Analysis 187
4.7.1 Micro Fuel Cell Array 187
4.7.2 A Method for High Throughput Screening of DMFC
Single Cells 189
4.7.3 Data Analysis of Combinatorial Results 190
VIII Contents
4.8 Challenge and Perspective 190
References 193
5 State-of-the-Art Electrocatalysts for Direct Methanol Fuel Cells 197
Hanwei Lei, Paolina Atanassova, Yipeng Sun, and Berislav Blizanac
5.1 Introduction 197
5.2 Electrocatalysis and Electrocatalysts for DMFC 198
5.2.1 Electrocatalysis for Methanol Oxidation 198
5.2.2 Electrocatalyst Development 199
5.2.3 Spray Conversion Reaction Platform for Electrocatalyst
Manufacturing 202
5.3 DMFC Electrocatalyst Characterization and Evaluation 203
5.3.1 Physical Characterization 204
5.3.2 Electrochemical Evaluation 208
5.3.2.1 Thin Film Rotating Disc Electrode (TFRDE) Catalyst
Characterization 208
5.3.2.2 Fuel Cell Evaluation 210
5.3.3 Durability Study 212
5.4 DMFC Performance Advancement via MEA Design 215
5.4.1 Electrocatalyst Layer Design 215
5.4.2 Hydrocarbon Membrane for DMFC Performance
Improvement 217
5.4.3 Other Aspects of DMFC Catalyst Development 220
5.5 Prospects for DMFC 222
5.6 Conclusions 222
References 224
6 Platinum Alloys as Anode Catalysts for Direct Methanol Fuel Cells 227
Ermete Antolini
6.1 Introduction 227
6.2 Phase Diagram vs. Activity: New Chances for DMFC Anodes 229
6.2.1 PtRu Catalysts: The Effect of Alloying and Ru Oxide Presence 229
6.2.2 PtSn Catalysts: Activity of PtSn Alloys and Non-Alloyed
Pt-SnOx 233
6.2.3 Pt-Co and Pt-Ni Catalysts: Effect of Alloying and CoOx and
NiOx Presence 235
6.3 Preparation Methods of Pt Alloys 238
6.3.1 Unsupported Catalysts 238
6.3.2 Supported Catalysts 240
6.4 Activity Evaluation of Pt Alloys 242
6.4.1 Pt-Based Binary Catalysts 243
6.4.1.1 Pt-W 243
6.4.1.2 Pt-Mo 244
6.4.1.3 Pt-Au 245
6.4.2 Ternary Pt-Ru-Based Catalysts 246
Contents IX
6.5 Stability of Pt-Ru Catalysts in DMFC Environment 248
6.6 Conclusions 250
References 251
7 Methanol-Tolerant Cathode Catalysts for DMFC 257
Claude Lamy, Christophe Coutanceau, and Nicolas Alonso-Vante
7.1 Introduction 257
7.2 Thermodynamics and Kinetics of the Oxygen Reduction
Reaction (ORR) 258
7.2.1 The ORR at a Platinum Electrode in a DMFC 258
7.2.2 Concepts for Novel Oxygen Reduction Electrocatalysts 261
7.3 Experimental Details 264
7.3.1 Determination of the Methanol Crossover of Proton Exchange
Membranes 264
7.3.1.1 Experimental Procedures 264
7.3.1.2 Results 266
7.3.2 Electrochemical Measurements (Voltammetry, RDE, RRDE, etc.) 269
7.3.2.1 Experimental Set-Up 269
7.3.2.2 Analysis of the Data 269
7.4 Synthesis and Characterizations of Nanostructured Catalysts for
the ORR 272
7.4.1 Platinum-Based Catalysts and Electrodes 272
7.4.1.1 Synthesis of Platinum-Based Catalysts by the Carbonyl
Complex Route 273
7.4.1.2 Synthesis of Platinum-Based Catalysts by the Colloidal Route 273
7.4.1.3 Physicochemical Characterizations of the Catalysts 274
7.4.1.4 Electrochemical Characterization of the Catalysts 275
7.4.2 Syntheses and Characterization of Transition Metal Macrocycles 278
7.4.2.1 Syntheses of Transition Metal Phthalocyanines 279
7.4.2.2 Syntheses of Transition Metal Porphyrins 280
7.4.2.3 Synthesis of Transition Metal Tetraazaannulenes 281
7.4.2.4 Characterization of the Macrocycles 281
7.4.2.5 Preparation of Macrocycle Electrodes and Characterization
of their Activity 282
7.4.3 Transition Metal Chalcogenide Catalysts and Electrodes 289
7.4.3.1 Synthesis of Metal Chalcogenides 289
7.4.3.2 Physicochemical Characterizations 292
7.4.4 Fuel Cell Tests 294
7.5 Catalyst Tolerance in the Presence of Methanol 296
7.5.1 Behavior of PtM/C Catalysts for the ORR in the Presence of
Methanol 296
7.5.2 Behavior of Transition Metal Macrocycles for the ORR in the
Presence of Methanol 300
7.5.3 Transition Metal Chalcogenides 302
7.5.4 Other Non Pt-Based Catalysts 304
X Contents
7.6 Summary and Outlook 306
References 308
8 Carbon Nanotube-Supported Catalysts for the Direct
Methanol Fuel Cell 315
Chen-Hao Wang, Li-Chyong Chen, and Kuei-Hsien Chen
8.1 Introduction 315
8.2 Preparation of Carbon Nanotube-Supported Catalysts 316
8.2.1 Functionalization of Carbon Nanotubes 316
8.2.2 Polymer-Modified CNTs 317
8.2.3 Impregnation Method 318
8.2.4 Colloidal Method 322
8.2.5 Electrodeposition Method 323
8.3 Characteristics of the Carbon Nanotube Electrode 325
8.3.1 Electrochemical Behavior of the CNT Electrode 325
8.3.2 Durability of the CNT Electrode 329
8.4 Electrochemical Behavior of Carbon Nanotube-Supported
Catalysts 331
8.4.1 Methanol Oxidation Reaction 331
8.4.2 Oxygen Reduction Reaction 337
8.4.3 Electrochemical Impedance Analysis 340
8.5 Direct Growth of Carbon Nanotubes as Catalyst Supports 341
8.5.1 Direct Growth of CNTs on Carbon Cloth (CNT-CC) 342
8.5.2 Appearance of CNT-CC-Supported Catalysts 344
8.5.3 Electrochemical Behavior of CNT-CC-Supported Catalysts 344
8.6 Conclusion 348
References 348
9 Mesoporous Carbon-Supported Catalysts for Direct Methanol
Fuel Cells 355
Chanho Pak, Ji Man Kim, and Hyuk Chang
9.1 Introduction 355
9.2 Mesoporous Carbon 356
9.2.1 General Aspects of Mesoporous Carbon 356
9.2.2 Synthesis of Mesoporous Carbon 357
9.2.2.1 Synthesis of OMC Materials via Nano-Casting Method 357
9.2.2.2 Synthesis of OMC Materials via Direct Self-Assembly
Approach 359
9.2.3 Characteristics of Mesoporous Carbon 360
9.3 Mesoporous Carbon-Supported Catalyst 363
9.3.1 Concepts of Mesoporous Carbon-Supported Catalyst 363
9.3.2 Preparation Methods for Mesoporous Carbon-Supported
Catalyst 364
9.3.3 Characterization of Mesoporous Carbon-Supported Catalyst 366
9.4 Fuel Cell Performance of Mesoporous Carbon-Supported Catalyst 367
Contents XI
9.5 Summary and Prospect 373
References 375
10 Proton Exchange Membranes for Direct Methanol Fuel Cells 379
Dae Sik Kim, Michael D. Guiver, and Yu Seung Kim
10.1 Introduction 379
10.2 Synthesis of Polymer Electrolyte Membranes for DMFC 380
10.2.1 Synthesis and Properties of PEMs Containing Aliphatic Polymers 380
10.2.2 Synthesis of Sulfonated Poly(aryl ether) Copolymers 385
10.2.2.1 Post-Sulfonation of Polymers 385
10.2.2.2 Direct Copolymerization of Sulfonated Monomers 388
10.2.2.3 Other Synthetic Strategies: Introducing Sulfonic Acid Groups 397
10.2.2.4 Properties of Sulfonated Poly(arylene ether) Copolymers 402
10.2.3 Single Cell Performances 403
10.3 Conclusions 412
References 412
11 Fabrication and Optimization of DMFC Catalyst Layers
and Membrane Electrode Assemblies 417
Liang Ma, Yunjie Huang, Ligang Feng, Wei Xing, and Jiujun Zhang
11.1 Introduction 417
11.2 Components for DMFC Catalyst Layer Optimization 419
11.2.1 Catalysts for the Methanol Oxidation Reaction (MOR) 419
11.2.2 Catalysts for the Oxygen Reduction Reaction (ORR) 423
11.2.3 Ionomer in the Catalyst Layer 424
11.2.4 Components Related to Mass Transport 430
11.3 Catalyzed DMFC Electrode Structure and Fabrication Process 433
11.3.1 Fabrication Process of DMFC Electrode 433
11.3.2 Novel Structures with Extended Reaction Zone 436
11.4 Other Electrode Fabrication Methods for DMFCs 438
11.4.1 Electrodeposition 438
11.4.2 Sputtering 438
11.4.3 Chemical Reduction Method 439
11.4.4 Dry Production Techniques 439
11.4.5 Glue Method 440
11.4.6 Sedimentation Method 440
11.4.7 Breathing Process 441
11.5 Summary 441
References 441
12 Local Current Distribution in Direct Methanol Fuel Cells 449
Andrei A. Kulikovsky and Klaus Wippermann
12.1 Introduction 449
12.2 Model 451
12.2.1 General Description 451
XII Contents
12.2.2 Basic Assumptions 452
12.2.3 Through-Plane Relations 453
12.2.4 Equations Along the Channel 454
12.2.5 Large Methanol Stoichiometry, Small Current 456
12.3 The Bifunctional Regime of DMFC Operation 459
12.3.1 Experimental 459
12.3.2 Experimental Results 461
12.3.3 Polarization Curves at Constant Oxygen Stoichiometry 462
12.3.4 Critical Air Flow Rate 464
12.4 Direct Methanol–Hydrogen Fuel Cells (DMHFCs) 466
12.4.1 Experiment 466
12.4.2 DMHFC: The Mechanism of Functioning 470
12.4.2.1 Potentials Across the Cell 470
12.4.2.2 Potentials Along the Channel 471
12.4.2.3 Potentials in the Galvanic Domain 473
12.4.2.4 The Transition Region: Hydrogen Cell 474
12.5 Bifunctional Activation of DMFC 476
12.5.1 Single Channel Cell 476
12.5.2 Activation of Square-Shaped Cells 480
12.6 Conclusions 482
12.7 List of symbols 483
12.7.1 Superscripts 484
12.7.2 Subscripts 484
12.7.3 Greek Symbols 485
References 485
13 Electrocatalysis in the Direct Methanol Alkaline Fuel Cell 487
Keith Scott and Eileen Yu
13.1 Introduction 487
13.2 History of Alkaline Methanol Fuel Cells 488
13.3 Electrocatalysis of Methanol Oxidation in Alkaline Media 490
13.3.1 Mechanism of Methanol Oxidation in Alkaline Media 491
13.3.2 Precious Metal Catalysts 491
13.3.3 Non-Precious Metal Catalysts 494
13.3.4 Effect of pH and Electrolyte 496
13.4 Oxygen Reduction and Methanol Tolerant Electrocatalysts 498
13.4.1 Oxygen Reduction Mechanism in Alkaline Media 498
13.4.1.1 Cyclic Voltammetry of Pt/C and Pt/Ru/C Catalysts in 1 M NaOH 500
13.4.2 Non-platinum Electrocatalysts 502
13.4.3 Mixed Reduction Potential of Methanol with Oxygen 503
13.5 Direct Methanol Fuel Cells in Alkaline Media 506
13.5.1 Aqueous Electrolyte Media 506
13.5.2 Cationic Exchange Membranes 508
13.5.3 Invariant Electrolyte Media 511
13.6 Direct Alkaline Polymer Electrolyte Membrane Fuel Cells 511
Contents XIII
13.6.1 Anion Exchange Membrane for Methanol Fuel Cells 511
13.6.2 Direct Methanol Alkaline Membrane Fuel Cell Performance 513
13.6.3 Membraneless Fuel Cell 517
13.7 Alkaline Fuel Cells with other Direct Liquid Fuels 518
13.8 Conclusions 520
References 521
14 Electrocatalysis in Other Direct Liquid Fuel Cells 527
Sharon L. Blair and Wai Lung (Simon) Law
14.1 Introduction 527
14.1.1 Fuel Characteristics and Theoretical Comparison of Various Fuels 527
14.2 Electrocatalysis of Direct Formic Acid Fuel Cells 528
14.2.2 Anode Catalysts for DFAFCs 530
14.2.2.1 Pt-based Anode Catalysts 531
14.2.2.2 Alternative Pt Modifiers 536
14.2.2.3 Pd-Based Anode Catalysts 536
14.2.3 Cathode Catalysts for DFAFCs 541
14.2.4 Direct Formic Acid Fuel Cell Performance 541
14.2.5 Summary of Electrocatalysis in DFAFCs 545
14.3 Electrocatalysis of Direct Ethanol Fuel Cells 545
14.3.1 Anode Catalysts for DEFCs 546
14.3.1.1 Binary Catalysts 547
14.3.1.2 Ternary Catalysts 549
14.3.1.3 Anode Catalysts for Alkaline Electrolytes 550
14.3.2 Cathode Catalysts for DEFCs 551
14.3.3 Direct Ethanol Fuel Cell Performance 552
14.3.4 Summary of Electrocatalysis in DEFCs 553
14.4 Electrocatalysis of Direct Hydrazine Fuel Cells 554
14.4.1 Anode Catalysts for DHFCs 555
14.4.1.1 Noble Metal-based Anode Catalysts 556
14.4.1.2 Non-Noble Metal-based Anode Catalysts 557
14.4.2 Cathode Catalysts for DHFCs 558
14.4.3 Direct Hydrazine Fuel Cell Performance 558
14.4.4 Summary of Electrocatalysis in DHFCs 560
14.5 Other Direct Liquid Fueled Fuel Cells 561
14.5.1 2-Propanol 561
14.5.2 Ethylene Glycol 561
14.5.3 Other Liquid Organic Fuels for Fuel Cells 562
14.6 Summary 562
References 563
Index 567
专业书籍
下载地址:(回复后可见)
**** Hidden Message ***** 谢谢分享。 谢谢 好资料,谢谢 楼主好人,一生平安 谢谢分享 学习雷锋
页:
[1]