请叫我雷锋 发表于 2017-7-16 09:56:51

《MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medi...

《MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications》
基于MEMS和纳米技术的通信、医疗和航天应用传感器和装置
作者:A.R. Jha, Ph.D.
出版社:CRC
出版时间:2008年








目录
Foreword ........................................................................................................... xix
Preface ............................................................................................................... xxi
Author ............................................................................................................. xxix
1 Highlights and Chronological Developmental History of MEMS
Devices Involving Nanotechnology............................................................... 1
1.1 Introduction.......................................................................................... 1
1.2 What Is MEMS?................................................................................... 3
1.2.1 Frequently Used Terms in Nanotechnology.............................. 3
1.2.2 2005 MEMS Industry Overview and Sales Projections
for MEMS Devices ................................................................... 4
1.3 Potential Applications of MEMS Devices in Commercial
and Space Systems................................................................................. 4
1.3.1 MEMS for Wireless, Base Stations, Satellites,
and Nanosatellites ..................................................................... 5
1.3.1.1 RF-MEMS Amplifier-Switched Filter Bank
Capabilities................................................................. 6
1.3.1.2 Passive RF-MEMS Components ................................ 7
1.3.2 RF-MEMS Technology for Base Station Requirements ............ 9
1.4 MEMS Technology for Military Systems Applications........................ 11
1.4.1 Material Requirements for Fabrication
of MEMS Devices................................................................... 13
1.4.2 Types of Nanostructures and Their Properties ........................ 14
1.4.2.1 Surface Plasmon Resonance...................................... 16
1.4.2.2 Ceramics for MEMS Sensors ................................... 17
1.4.3 Fabrication of Critical Elements of a MEMS Device .............. 17
v
1.4.4 MEMS Technology for Electronic Circuits
and Detectors for Military Applications ................................ 19
1.4.4.1 Passive MEMS Devices for Commercial,
Military, and Space Applications ............................ 19
1.4.5 Nanotechnology for Armors to Provide Protection
to Soldiers ............................................................................. 20
1.4.6 Nanotechnology-Based Biometric Structures
to Monitor Soldier Health .................................................... 20
1.4.7 Nanomaterials for External Support Muscles and Artificial
Muscles for Injured Soldiers on the Battlefield...................... 21
1.4.8 Robotic Arms for Battlefield Applications ............................. 21
1.4.9 Portable Radar Using MEMS/Nanotechnology
for Military Applications ....................................................... 22
1.5 MEMS for Commercial, Industrial, Scientific,
and Biomedical System Applications ................................................. 23
1.5.1 Nanotubes and Nanotube Arrays for Various
Applications .......................................................................... 23
1.5.2 MEMS-Based Video Projection System ................................ 24
1.5.3 Nanotechnology for Photovoltaic Solar Cells and 3-D
Lithium Ion Microbatteries for MEMS Devices.................... 25
1.6 MEMS Technology for Hard-Disk Drives ........................................ 26
1.6.1 MEMS Devices for Thermographic Nondestructive
Testing .................................................................................. 27
1.7 MEMS Devices for Uncooled Thermal Imaging Arrays
and Cooled Focal Planar Arrays for Various Applications.................. 28
1.8 Applications of Nanotechnology in IR and Electro-Optical
Sensors for Biometric and Security Applications................................ 29
1.8.1 Nanotechnology-Based Laser Scanning Systems .................... 30
1.8.2 MEMS-Based Sensors for Detection of Chemical
and Biological Threats........................................................... 31
1.8.3 Potential Applications of Nanophotonic Sensors
and Devices........................................................................... 31
1.8.4 MEMS Technology for Photonic Signal Processing
and Optical Communications ............................................... 32
1.9 MEMS Technology for Medical Applications ................................... 33
1.10 MEMS Technology for Satellite Communications
and Space Systems Applications ........................................................ 34
1.11 MEMS Devices for Auto Industry Applications ................................ 36
1.12 MEMS Technology for Aerospace System Applications .................... 37
1.13 Summary........................................................................................... 38
References .................................................................................................... 39
vi &
2 Potential Actuation Mechanisms, Their Performance Capabilities,
and Applications ......................................................................................... 41
2.1 Introduction........................................................................................ 41
2.2 Classification of Actuation Mechanisms .............................................. 43
2.3 Structural Requirements and Performance Capabilities
of Electrostatic Actuation Mechanism ................................................. 43
2.3.1 Electrostatic Actuation Mechanism ......................................... 43
2.3.1.1 Cantilever Beam Design Requirements .................... 45
2.3.2 Electrostatic Force Computation ............................................. 48
2.3.3 Pull-In and Pull-Out Voltage Requirements ........................... 54
2.3.3.1 Pull-In Voltage......................................................... 57
2.3.3.2 Pull-Out Voltage...................................................... 62
2.3.3.3 Electrostatic Microactuator Configurations
for Generating Higher Force and Energy
Density Capabilities ................................................. 65
2.4 Piezoelectric Actuation Mechanism ..................................................... 66
2.4.1 Structural Material Requirements for Cantilever Beams .......... 68
2.4.2 Threshold Voltage................................................................... 69
2.4.3 Tip Deflection of the Cantilever Beam ................................... 71
2.4.4 Bending Moment of the Cantilever Beam............................... 71
2.4.5 Contact Force Requirements ................................................... 75
2.5 Electrothermal Actuation Mechanism ................................................. 78
2.6 Electromagnetic Actuation Mechanism ............................................... 83
2.6.1 Pull-In and Pull-Out Magnetomotive Forces .......................... 84
2.6.2 Actuation Force due to Induced Magnetic Force .................... 85
2.6.2.1 Parametric Trade-Off Computations........................ 87
2.7 Electrodynamic Actuation Mechanism ................................................ 88
2.8 Electrochemical Actuation Mechanism................................................ 91
2.8.1 Classification and Major Benefits of CNT.............................. 92
2.8.2 MWCNT Arrays and Electrochemical Actuator
Performance ............................................................................ 92
2.8.3 Fabrication and Material Requirements for the Actuator......... 92
2.9 Summary............................................................................................. 94
References .................................................................................................... 95
3 Latest and Unique Methods for Actuation ................................................. 97
3.1 Introduction........................................................................................ 97
3.2 Electrostatic Rotary Microactuator with Improved Shaped Design...... 98
3.2.1 Performance Limitation of Conventional Parallel-Plate
Electrodes................................................................................ 99
3.2.2 ESRM with Tilted Configuration ......................................... 100
& vii
3.2.3 Requirements for Optimum Shaped Electrodes..................... 100
3.2.4 Force Generation Computations of Rotary Actuator
with Conventional and Tilted Configurations....................... 101
3.2.4.1 Actuation Force Computation
for Conventional Configuration ............................. 102
3.2.4.2 Force Generation Computation
for Tilted Configuration......................................... 102
3.2.5 Torque-Generating Capability of the Rotary Actuator
with Tilted Configuration ..................................................... 109
3.2.6 Optimum Curve Shape of the Electrodes.............................. 110
3.2.6.1 Potential Electrode Shapes...................................... 110
3.2.6.2 Normalized Torque as a Function
of Normalized Angular Displacement..................... 111
3.2.6.3 Parametric Requirements for Optimum
Rotary Microactuator ............................................. 115
3.3 Unique Microactuator Design for HHD Applications ...................... 118
3.3.1 Introduction.......................................................................... 118
3.3.2 Benefits and Design Aspects of a Dual-Stage
Servomechanism (or MEMS Piggyback Actuator)................. 119
3.3.2.1 Architecture of a Third-Generation
Microactuator......................................................... 120
3.3.2.2 Performance Capabilities of the MEMS
Piggyback Microactuator ........................................ 120
3.3.3 Force Generation Capability, Displacement Limit,
and Mechanical Resonance Frequency Range........................ 122
3.3.3.1 Electrostatic Force Calculation ............................... 123
3.3.3.2 Mechanical Resonance Frequency
Calculation............................................................. 123
3.3.3.3 Electrode Mass Computation ................................. 125
3.3.3.4 Displacement (x) as a Function of
Gap Size ( g) and Number of Electrodes (N) ......... 126
3.4 Capabilities of Vertical Comb Array Microactuator........................... 127
3.4.1 Structural Requirements and Critical Design Aspects
of VCA Actuator................................................................... 129
3.4.2 VCAM Performance Comparison with Other
Actuators ............................................................................... 130
3.4.3 Potential Comb Finger Shapes .............................................. 130
3.5 Capabilities of Bent-Beam Electrothermal Actuators ......................... 133
3.5.1 Performance Capabilities and Design Configuration
of Bent-Beam Electrothermal Actuators ................................ 133
viii &
3.5.2 Brief Description of the BBET Structure .............................. 134
3.5.3 Input Power Requirements for BBET Actuators ................... 139
3.6 Summary........................................................................................... 140
References .................................................................................................. 140
4 Packaging, Processing, and Material Requirements
for MEMS Devices ................................................................................... 141
4.1 Introduction...................................................................................... 141
4.2 Packaging and Fabrication Materials ................................................. 142
4.2.1 Packaging Material Requirements and Packaging
Processes................................................................................ 144
4.2.1.1 Sealing Methods..................................................... 145
4.2.2 Effects of Temperature on Packaging .................................... 146
4.2.3 Effect of Pressure on Packaging and Device Function........... 146
4.2.4 Fabrication Aspects for MEMS Devices Incorporating
Nanotechnology .................................................................... 147
4.2.4.1 Thin-Film Capping Requirements
for MEMS Devices ................................................ 149
4.2.4.2 Chip Capping and Bonding Requirements............. 149
4.2.4.3 Transition and Feedthrough Requirements
for MEMS Devices ................................................ 150
4.2.4.4 Material Requirements for Piezoelectric
Actuators ................................................................ 151
4.2.4.5 Material Requirements for Structural
Support, Electrodes, and Contact Pads................... 153
4.2.4.6 Requirements for Electrodeposition
and Electroplating Materials................................... 153
4.3 Impact of Environments on MEMS Performance ............................. 154
4.3.1 Impact of Temperature Variations on Coefficient
of Thermal Expansion........................................................... 155
4.3.2 Effects of Temperature on Thermal Conductivity
of Materials Used in MEMS................................................. 156
4.3.3 Special Alloys Best Suited for MEMS Applications ............... 159
4.3.3.1 Benefits of CE-Alloys in RF/Microwave
MEMS Packaging .................................................. 160
4.3.3.2 Benefits of CE-Alloys for Thermal Backing
Plates...................................................................... 160
4.3.3.3 Benefits of CE-Alloys in Integrated Circuit
Assemblies .............................................................. 161
4.3.4 Bulk Materials Best Suited for Mechanical Design
of MEMS Devices................................................................. 161
& ix
4.4 Material Requirements for Electrostatic Actuator Components ......... 162
4.4.1 Material Properties for MEMS Membranes........................... 163
4.4.2 Sacrificial Material Requirements for MEMS Devices ........... 163
4.4.3 Three-Dimensional Freely Movable Mechanical
Structure Requirements......................................................... 164
4.5 Substrate Materials Best Suited for Various MEMS Devices ............. 164
4.5.1 Soft Dielectric Substrates....................................................... 165
4.5.2 Hard Dielectric Substrates..................................................... 165
4.5.3 Electrical Properties of Soft and Hard Substrates................... 167
4.5.4 Glass–Ceramic Hybrid Substrate for MEMS ........................ 170
4.5.5 Para-Electronic Ceramic Substrates for MEMS
Applications .......................................................................... 170
4.5.6 Insulation and Passivation Layer Materials ............................ 171
4.5.7 Material Requirements for MEMS in Aerospace Systems...... 172
4.6 Summary........................................................................................... 173
References .................................................................................................. 174
5 RF-MEMS Switches Operating at Microwave
and mm-Wave Frequencies....................................................................... 175
5.1 Introduction...................................................................................... 175
5.2 Operating Principle and Critical Performance Parameters
of MEMS Devices............................................................................. 177
5.2.1 Critical Performance Parameters Affected
by Environments................................................................... 177
5.2.2 Two Distinct Configurations of RF-MEMS Switches
and Design Aspects ............................................................... 178
5.3 Performance Capabilities and Design Aspects of RF-MEMS
Shunt Switches.................................................................................. 180
5.3.1 Electrostatic Actuation Requirements for the Shunt
Switch Using Membranes ..................................................... 181
5.3.1.1 Sample Calculations for Spring Constant
and Pull-in Voltage ................................................ 183
5.3.2 Computer Modeling Parameters for MEMS
Shunt Switch......................................................................... 183
5.3.2.1 Computation of Upstate and Downstate
Capacitances........................................................... 185
5.3.2.2 Current Distribution and Series Resistance
of the MEMS Bridge Structure .............................. 186
5.3.2.3 Estimates of Switch Inductance
and Capacitance Parameters ................................... 187
5.3.2.4 Insertion Loss in a MEMS Switch ......................... 188
x &
5.3.2.5 Estimation of Series Resistance of the Bridge and
Impact of Switch Inductance on the Isolation........ 189
5.3.2.6 Typical Upstate and Downstate Insertion
Losses in a MEMS Shunt Switch ........................... 191
5.4 MEMS Shunt Switch Configuration for High Isolation.................... 192
5.4.1 Tuned Two-Bridge Design and Its Performance
Capabilities............................................................................ 193
5.4.2 Design Aspects and Performance Capabilities
of Four-Bridge Cross Switch ................................................. 194
5.4.2.1 High Isolation with Inductively Tuned
MEMS Switches..................................................... 196
5.4.3 MEMS Shunt Switches for Higher mm-Wave Frequencies .... 197
5.4.3.1 W-Band MEMS Shunt-Capacitive Switch ............. 197
5.4.3.2 Switching Speed of MEMS Shunt Switches ........... 199
5.5 MEMS Switches Using Metallic Membranes .................................... 201
5.5.1 Introduction.......................................................................... 201
5.5.2 Operating Principle and Design Aspects of Capacitive
Membrane Switches .............................................................. 201
5.5.3 RF Performance Parameters of Membrane Shunt Switch ...... 209
5.6 RF-MEMS Switches with Low-Actuation Voltage ............................ 210
5.6.1 Introduction.......................................................................... 210
5.6.2 Fabrication Process Steps and Critical Elements
of the Switch......................................................................... 211
5.6.3 Reliability Problems and Failure Mechanisms
in the Shunt MEMS Switches............................................... 211
5.6.4 RF Performance Capabilities ................................................. 213
5.7 RF-MEMS Series Switches................................................................ 213
5.7.1 Introduction.......................................................................... 213
5.7.2 Description and Design Aspects of the MEMS
Series Switch ......................................................................... 213
5.7.3 Fabrication Process Steps and Switch Operational
Requirements ........................................................................ 215
5.7.4 RF Design Aspects ................................................................ 217
5.7.5 RF Performance Parameters of the Switch............................. 217
5.8 Effects of Packaging Environments on the Functionality
and Reliability of the MEMS Switches.............................................. 218
5.8.1 Introduction.......................................................................... 218
5.8.2 Impact of Temperature on the Functionality
and Reliability ....................................................................... 218
5.8.3 Impact of Pressure on Switch Reliability
and RF Performance ............................................................. 219
& xi
5.8.4 Effects of Zero-Level Packaging on MEMS Switch
Performance ........................................................................ 220
5.9 Packaging Material Requirements for MEMS Switches................... 220
5.9.1 Properties and Applications of CE-Alloys
for RF-MEMS Devices and Sensors .................................... 221
5.10 Summary......................................................................................... 222
References .................................................................................................. 223
6 RF/Microwave MEMS Phase Shifter........................................................ 225
6.1 Introduction.................................................................................... 225
6.2 Properties and Parameters of CPW Transmission Lines .................. 226
6.2.1 Computations of CPW Line Parameters ............................. 227
6.3 Distributed MEMS Transmission-Line Phase Shifters..................... 232
6.3.1 Introduction........................................................................ 232
6.3.2 Computations of DMTL Parameters .................................. 233
6.3.2.1 Bragg Frequency Computations ........................... 234
6.3.2.2 Computations of Bridge Impedance (ZB)
and Phase Velocity (Vp) ....................................... 236
6.3.2.3 Insertion Loss in the DMTL Section ................... 238
6.4 Design Aspects and DMTL Parameter Requirements
for TTD Phase Shifters Operating at mm-Wave Frequencies.......... 239
6.4.1 Computations of Unloaded Line Impedance (Zul ),
Line Inductance, and Capacitance per Unit
Length of the Transmission Line ........................................ 240
6.4.2 Digital MEMS Distributed X-Band Phase Shifter ............... 241
6.4.3 Design Procedure for mm-Wave DMTL Phase Shifters...... 242
6.4.4 Expression for Phase Shift ................................................... 244
6.4.5 Optimized Design Parameters for a W-Band DMTL
Phase Shifter ....................................................................... 245
6.5 Two-Bit MEMS DMTL Phase Shifter Designs .............................. 247
6.5.1 Design Parameters and Performance Capabilities
of 2-Bit, X-Band Phase Shifter ............................................ 248
6.5.2 Insertion Loss in a DMTL Phase Shifter............................. 249
6.5.3 Digital Version of the DMTL Phase Shifter
with 3608 Phase Capability ................................................. 250
6.5.3.1 Design Parameter Requirements for Digital,
3608 Phase Shifter................................................ 250
6.5.3.2 Insertion Loss Contributed by MIM
Capacitors and Its Effect on CPW Line Loss ....... 252
6.5.3.3 Phase Noise Contribution from DMTL
Phase Shifters ....................................................... 253
xii &
6.6 Multi-Bit Digital Phase Shifter Operating at K and Ka
Frequencies ..................................................................................... 254
6.6.1 Introduction...................................................................... 254
6.6.2 Design Aspects and Critical Elements of the MDDM
Phase Shifter ..................................................................... 255
6.7 Ultrawide Band Four-Bit True-Time-Delay MEMS Phase
Shifter Operating over dc-40 GHz.................................................. 257
6.7.1 Introduction...................................................................... 257
6.7.2 Design Requirements and Parameters to Meet
Specific Performance for a Wideband 4-Bit, TTD
Phase Shifter ..................................................................... 257
6.7.3 Performance Parameter of the Device................................ 258
6.8 Two-Bit, V-Band Reflection-Type MEMS Phase Shifter ................ 259
6.8.1 Introduction...................................................................... 259
6.8.2 Design Aspects and Performance Capabilities.................... 260
6.9 Three-Bit, Ultralow Loss Distributed Phase Shifter Operating
over K-Band Frequencies ................................................................ 264
6.9.1 Introduction...................................................................... 264
6.9.2 Design Aspects, Operating Principle, and Description
of Critical Elements........................................................... 264
6.10 Three-Bit, V-Band, Reflection-Type Distributed MEMS
Phase Shifter ................................................................................... 266
6.10.1 Design Aspects and Critical Performance Parameters ........ 266
6.10.2 RF Performance of the 3 dB CPW Coupler
and the 3-Bit, V-Band Phase Shifter ................................. 267
6.10.3 Maximum Phase Shift Available from a Multibridge
DMTL Phase Shifter......................................................... 267
6.11 Summary......................................................................................... 269
References .................................................................................................. 270
7 Applications of Micropumps and Microfluidics ....................................... 271
7.1 Introduction.................................................................................... 271
7.2 Potential Applications of Micropumps ............................................ 272
7.3 Design Aspects of Fixed-Valve Micropumps ................................... 272
7.3.1 Models Most Suited for Performance Optimization.......... 273
7.3.2 Reliable Modeling Approach for MPs with Fixed Valves... 273
7.3.2.1 Electrical and Mechanical Parameters
for Low-Order Model ........................................ 274
7.3.2.2 Mathematical Expression for Critical Pump
Parameters.......................................................... 275
7.3.2.3 Chamber Parameters .......................................... 276
& xiii
7.3.2.4 Fluidic Valve Parameters and Their
Typical Values........................................................ 277
7.3.2.5 Description of Micropumps with
Straight-Channel Configurations ............................ 279
7.3.2.6 Impact of Viscosity and Membrane
Parameters on Valve Performance .......................... 281
7.4 Dynamic Modeling for Piezoelectric Valve-Free Micropumps........... 282
7.4.1 Introduction.......................................................................... 282
7.4.2 Modeling for the Piezoelectric Valve-Free Pump................... 282
7.4.3 Natural Frequency of the Micropump System ...................... 285
7.4.4 Pump Performance in Terms of Critical Parameters.............. 287
7.5 Design Aspects and Performance Capabilities of an
Electrohydrodynamic Ion-Drag Micropump ..................................... 289
7.5.1 Introduction.......................................................................... 289
7.5.2 Design Concepts and Critical Parameters
of an EHD Pump ................................................................. 290
7.5.3 Benefits of EHD Ion-Drag Pumps........................................ 292
7.5.4 Critical Design Aspects of Ion-Drag Pump
and Electrode Geometries ..................................................... 294
7.6 Capabilities of a Ferrofluidic Magnetic Micropump.......................... 295
7.6.1 Introduction.......................................................................... 295
7.6.2 Design Aspects and Critical Performance Parameters ............ 295
7.6.3 Operational Requirements for Optimum Pump
Performance .......................................................................... 298
7.7 Summary........................................................................................... 300
References .................................................................................................. 301
8 Miscellaneous MEMS/Nanotechnology Devices and Sensors
for Commercial and Military Applications ............................................... 303
8.1 Introduction...................................................................................... 303
8.2 MEMS Varactors or Tunable Capacitors .......................................... 304
8.2.1 Benefits and Shortcomings of MEMS Varactors ................... 307
8.2.2 MEMS Varactor Design Aspects and Fabrication
Requirements ........................................................................ 307
8.2.3 Effects of Nonlinearity Generated by MEMS
Capacitors ............................................................................. 308
8.3 Micromechanical Resonators ............................................................. 311
8.3.1 Introduction.......................................................................... 311
8.3.2 Types of Micro-Resonators and Their Potential
Applications .......................................................................... 311
xiv &
8.3.3 Free-Free Beam High-Q Micro-Resonators ........................... 315
8.3.3.1 Structural Design Aspects and Requirements
of FFB Micro-Resonators ....................................... 315
8.3.3.2 Operational Requirements and Parameters
FFB Micro-Resonator............................................. 318
8.3.4 Folded-Beam Comb-Transducer Micro-Resonator ................ 320
8.3.5 Clamped-Clamped Beam Micro-Resonator ........................... 321
8.3.5.1 Effects of Environmental Factors
on Micro-Resonator Performance........................... 322
8.3.5.2 Performance Summary of Various
Micromechanical Resonators .................................. 323
8.4 Micromechanical Filters .................................................................... 324
8.4.1 Micromechanical Filter Design Aspects ................................. 324
8.4.2 Critical Elements and Performance Parameters
of Micromechanical Filters .................................................... 326
8.4.3 Performance Summary of a Two-Resonator
High-Frequency Filter ........................................................... 327
8.5 Transceivers....................................................................................... 329
8.5.1 Introduction.......................................................................... 329
8.5.2 Transceiver Performance Improvement from Integration
of Micromechanical Resonator Technology........................... 329
8.6 Oscillator Using Micromechanical Resonator Technology ................ 330
8.6.1 Design Concepts and Performance Parameters
of the 16.5 kHz Oscillator .................................................... 330
8.7 V-Band MEMS-Based Tunable Band-Pass Filters ............................. 331
8.7.1 Introduction.......................................................................... 331
8.7.2 Design Parameters and Fabrications Techniques
for a V-Band MEMS-Filter ................................................... 332
8.7.3 Performance Parameters of a V-Band, Two-Stage
MEMS Tunable Filter........................................................... 333
8.8 MEMS-Based Strain Sensors ............................................................. 333
8.8.1 Introduction.......................................................................... 333
8.8.2 Design Aspects and Requirements for Strain Sensor
Installation and Calibration................................................... 333
8.8.3 Gauge Factor Computation................................................... 336
8.9 MEMS Interferometric Accelerometers ............................................. 338
8.9.1 Introduction.......................................................................... 338
8.9.2 Design Aspects and Requirements
for an Interferometric Accelerometer ..................................... 338
& xv
8.10 MEMS-Based Micro-Heat Pipes ..................................................... 341
8.10.1 Introduction...................................................................... 341
8.10.2 Design Aspects and Critical Parameters
of Micro-Heat Pipes.......................................................... 341
8.11 MEMS-Based Thin-Film Microbatteries ......................................... 344
8.11.1 Introduction...................................................................... 344
8.11.2 Critical Design Aspects and Requirements
for the 3-D, Thin-Film Microbatteries.............................. 344
8.11.3 Projected Performance Parameters of a 3-D,
Thin-Film Microbattery .................................................... 349
8.11.4 Unique Features and Potential Applications
of Microbatteries ............................................................... 350
8.12 Summary......................................................................................... 350
References .................................................................................................. 351
9 Materials for MEMS and Nanotechnology-Based Sensors
and Devices............................................................................................... 353
9.1 Introduction.................................................................................... 353
9.2 Photonic Crystals ............................................................................ 354
9.2.1 Photonic Bandgap Fiber.................................................... 354
9.2.2 Core Material Requirements for PCF................................ 355
9.2.3 Unique Properties of PCFs and Their Potential
Applications ...................................................................... 356
9.3 Nanotechnology-Based Materials and Applications ......................... 357
9.3.1 Nanocrystals...................................................................... 358
9.3.2 Photonic Nanocrystals....................................................... 358
9.3.3 Nanowires and Rods and Their Applications .................... 359
9.3.3.1 Zinc Oxide Nanowires....................................... 359
9.3.3.2 Silicon Nanowires .............................................. 359
9.3.3.3 Zinc Selenium Nanowires .................................. 360
9.3.3.4 Zinc Phosphide Nanowires ................................ 361
9.3.3.5 Cadmium Sulfide Nanowires ............................. 361
9.3.3.6 Iron–Gallium Nanowires.................................... 362
9.4 Nanoparticles .................................................................................. 362
9.5 Quantum Dots................................................................................ 363
9.5.1 Applications of Quantum Dots ......................................... 364
9.5.2 Unique Security Aspects of Quantum Dots ...................... 364
9.5.3 Lead Sulfide Quantum Dots with Nonlinear Properties.... 365
9.6 Nanobubbles................................................................................... 365
9.6.1 Applications of Nanobubbles ............................................ 366
9.7 MEMS Deformable Micro-Mirrors ................................................. 366
xvi &
9.7.1 Applications of MEMS Deformable Mirrors ....................... 367
9.8 Carbon Nanotubes and CNT Arrays .............................................. 368
9.8.1 Potential Applications of CNT Arrays................................. 368
9.8.1.1 Nanostructures/Nanocomposites Using
CNT Arrays ......................................................... 368
9.8.1.2 CNTs as Field Emitters or Electron Sources ........ 370
9.8.1.3 CNT Technology for Biosensor Chemical
and Environmental Applications .......................... 370
9.8.1.4 Nanotube Arrays for Electrochemical
Actuators .............................................................. 371
9.8.1.5 Nanotube Probes and Dispensing Devices ........... 372
9.9 Nanotechnology- and MEMS-Based Sensors and Devices
for Specific Applications .................................................................. 372
9.9.1 Acoustic Sensors Using Nanotechnology
for Underwater Detection Applications ............................... 373
9.9.2 MEMS Technology for mm-Wave
Microstrip Patch Antennas.................................................. 373
9.9.3 Carbon Nanotube-Based Transistors and Solar Cells .......... 374
9.9.4 Nanotechnology-Based Sensors for Weapon Health
and Battlefield Environmental Monitoring Applications ..... 374
9.9.4.1 Nanotechnology-Based Sensors to Monitor
Weapon Health.................................................... 374
9.9.4.2 Nanotechnology-Based Sensors to Monitor
Battlefield Environmental Conditions .................. 376
9.9.5 MEMS-Based Gyros and Applications ................................ 376
9.9.6 MEMS-Based Accelerometers and Applications .................. 379
9.9.7 Material Requirements and Properties
for MEMS- and NT-Based Sensors and Devices................. 379
9.9.7.1 Introduction......................................................... 379
9.9.7.2 Material Requirements for Fabrication
of MEMS Sensors and Devices ............................ 380
9.9.7.3 Properties of Materials Required
for Mechanical Design of MEMS Devices ........... 380
9.9.7.4 Properties of Materials Required
for Thermal Design of MEMS Devices................ 381
9.10 Summary......................................................................................... 382
References .................................................................................................. 383
Index................................................................................................................ 385


专业书籍
下载地址:(回复后可见)
**** Hidden Message *****

璀璨星空 发表于 2017-10-30 21:22:36

谢谢分享。

o0o 发表于 2018-7-27 13:55:28

谢谢

御锋 发表于 2018-8-3 10:04:36

好书啊

sdhlag 发表于 2019-4-17 10:06:08

谢谢分享

lxw202 发表于 2019-7-20 19:59:29

谢谢分享

engine-thd 发表于 2019-8-10 23:38:02

好资料

5098612963 发表于 2020-3-21 15:04:08

好资料,谢谢楼主分享

mogudeng 发表于 2020-5-22 11:23:14

楼主好人,一生平安

rzw 发表于 2020-11-22 18:35:07

谢谢分享
页: [1] 2
查看完整版本: 《MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medi...