请叫我雷锋 发表于 2017-7-13 11:48:02

《Introduction to Structural Dynamics and Aeroelasticity》第二版

《Introduction to Structural Dynamics and Aeroelasticity》第二版
结构动力学与气动弹性力学导论
作者:
Dewey H. Hodges
Georgia Institute of Technology
G. Alvin Pierce
Georgia Institute of Technology
出版社:Cambridge
出版时间:2011年






目录
Figures page xi
Tables xvii
Foreword xix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Mechanics Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Particles and Rigid Bodies 7
2.1.1 Newton’s Laws 7
2.1.2 Euler’s Laws and Rigid Bodies 8
2.1.3 Kinetic Energy 8
2.1.4 Work 9
2.1.5 Lagrange’s Equations 9
2.2 Modeling the Dynamics of Strings 10
2.2.1 Equations of Motion 10
2.2.2 Strain Energy 13
2.2.3 Kinetic Energy 14
2.2.4 Virtual Work of Applied, Distributed Force 15
2.3 Elementary Beam Theory 15
2.3.1 Torsion 15
2.3.2 Bending 18
2.4 Composite Beams 20
2.4.1 Constitutive Law and Strain Energy for Coupled Bending
and Torsion 21
2.4.2 Inertia Forces and Kinetic Energy for Coupled Bending
and Torsion 21
2.4.3 Equations of Motion for Coupled Bending and Torsion 22
2.5 The Notion of Stability 23
2.6 Systems with One Degree of Freedom 24
2.6.1 Unforced Motion 24
2.6.2 Harmonically Forced Motion 26
vii
viii Contents
2.7 Epilogue 28
Problems 29
3 Structural Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 Uniform String Dynamics 31
3.1.1 Standing Wave (Modal) Solution 31
3.1.2 Orthogonality of Mode Shapes 36
3.1.3 Using Orthogonality 38
3.1.4 Traveling Wave Solution 41
3.1.5 Generalized Equations of Motion 44
3.1.6 Generalized Force 48
3.1.7 Example Calculations of Forced Response 50
3.2 Uniform Beam Torsional Dynamics 55
3.2.1 Equations of Motion 56
3.2.2 Boundary Conditions 57
3.2.3 Example Solutions for Mode Shapes and Frequencies 62
3.2.4 Calculation of Forced Response 69
3.3 Uniform Beam Bending Dynamics 70
3.3.1 Equation of Motion 70
3.3.2 General Solutions 71
3.3.3 Boundary Conditions 72
3.3.4 Example Solutions for Mode Shapes and Frequencies 80
3.3.5 Calculation of Forced Response 92
3.4 Free Vibration of Beams in Coupled Bending and Torsion 92
3.4.1 Equations of Motion 92
3.4.2 Boundary Conditions 93
3.5 Approximate Solution Techniques 94
3.5.1 The Ritz Method 94
3.5.2 Galerkin’s Method 101
3.5.3 The Finite Element Method 106
3.6 Epilogue 115
Problems 116
4 Static Aeroelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.1 Wind-Tunnel Models 128
4.1.1 Wall-Mounted Model 128
4.1.2 Sting-Mounted Model 131
4.1.3 Strut-Mounted Model 134
4.1.4 Wall-Mounted Model for Application to Aileron Reversal 135
4.2 Uniform Lifting Surface 139
4.2.1 Steady-Flow Strip Theory 140
4.2.2 Equilibrium Equation 141
4.2.3 Torsional Divergence 142
4.2.4 Airload Distribution 145
Contents ix
4.2.5 Aileron Reversal 148
4.2.6 Sweep Effects 153
4.2.7 Composite Wings and Aeroelastic Tailoring 163
4.3 Epilogue 167
Problems 168
5 Aeroelastic Flutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.1 Stability Characteristics from Eigenvalue Analysis 176
5.2 Aeroelastic Analysis of a Typical Section 182
5.3 Classical Flutter Analysis 188
5.3.1 One-Degree-of-Freedom Flutter 189
5.3.2 Two-Degree-of-Freedom Flutter 192
5.4 Engineering Solutions for Flutter 194
5.4.1 The k Method 195
5.4.2 The p-k Method 196
5.5 Unsteady Aerodynamics 201
5.5.1 Theodorsen’s Unsteady Thin-Airfoil Theory 203
5.5.2 Finite-State Unsteady Thin-Airfoil Theory of Peters et al. 206
5.6 Flutter Prediction via Assumed Modes 211
5.7 Flutter Boundary Characteristics 217
5.8 Structural Dynamics, Aeroelasticity, and Certification 220
5.8.1 Ground-Vibration Tests 221
5.8.2 Wind Tunnel Flutter Experiments 222
5.8.3 Ground Roll (Taxi) and Flight Tests 222
5.8.4 Flutter Flight Tests 224
5.9 Epilogue 225
Problems 225
Appendix A: Lagrange’s Equations . . . . . . . . . . . . . . . . . . . . . . . 231
A.1 Introduction 231
A.2 Degrees of Freedom 231
A.3 Generalized Coordinates 231
A.4 Lagrange’s Equations 232
A.5 Lagrange’s Equations for Conservative Systems 236
A.6 Lagrange’s Equations for Nonconservative Systems 239
References 241
Index 243


这本书出中文版了
结构动力学与气动弹性力学导论


专业书籍
下载地址:(回复后可见)
**** Hidden Message *****

gyue123 发表于 2017-9-3 23:09:51

谢谢楼主分享。

璀璨星空 发表于 2017-10-26 14:20:39

谢谢分享。

jjj 发表于 2018-1-1 16:12:07

very good

wwtao_2005 发表于 2018-5-7 23:25:03

感谢分享

御锋 发表于 2018-8-6 15:11:37

谢谢

xuewuhen999 发表于 2019-2-21 12:04:46

谢谢

magic-john 发表于 2019-8-11 20:29:56

好资料

5098612963 发表于 2020-3-20 15:24:23

好资料,谢谢提供

mogudeng 发表于 2020-5-22 10:31:19

楼主好人,一生平安
页: [1] 2
查看完整版本: 《Introduction to Structural Dynamics and Aeroelasticity》第二版