《Micro & Nano-Engineering of Fuel Cells》
《Micro & Nano-Engineering of Fuel Cells》燃料电池的微纳工程
编辑:
DennisY.C. Leung
Department of Mechanical Engineering, The University of Hong Kong,
Pokfulam Road, Hong Kong
Jin Xuan
Institute of Mechanical, Process and Energy Engineering, School of Engineering and
Physical Sciences, Heriot-Watt University, Edinburgh, UK
出版社:CRC
出版时间:2015年
目录
About the book series vii
Editorial board ix
List of contributors xxvii
Preface xxix
About the editors xxxiii
1. Pore-scale water transport investigation for polymer electrolyte membrane (PEM) fuel cells 1
Takemi Chikahisa &Yutaka Tabe
1.1 Introduction 1
1.2 Basics of cell performance and water management 1
1.3 Water transport in the cell channels 4
1.3.1 Channel types 4
1.3.2 Observation of water production, temperatures, and current
density distributions 5
1.3.3 Characteristics of porous separators 9
1.4 Water transport in gas diffusion layers 11
1.4.1 Water transport with different anisotropic fiber directions of the GDL 12
1.4.2 Water transport simulation in GDLs with different wettability gradients 14
1.5 Water transport through micro-porous layers (MPL) 16
1.5.1 Effect of the MPL on the cell performance 16
1.5.2 Observation of the water distribution in the cell 18
1.5.3 Analysis of water transport through MPL 20
1.5.4 Mechanism for improving cell performance with an MPL 21
1.6 Transport phenomena and reactions in the catalyst layers 22
1.6.1 Introduction 22
1.6.2 Analysis model and formulation 23
1.6.3 Results of analysis and major parameters in CL affecting performance 25
1.7 Water transport in cold starts 28
1.7.1 Cold start characteristics and the effect of the start-up temperature 28
1.7.2 Observation of ice distribution and evaluation of the freezing mechanism 30
1.7.3 Strategies to improve cold start performance 31
1.8 Summary 33
2. Reconstruction of PEM fuel cell electrodes with micro- and nano-structures 37
Ulises Cano-Castillo & Romeli Barbosa-Pool
2.1 Introduction 37
2.1.1 The technology: complex operational features required 37
2.1.1.1 Nano-technology to the rescue? 38
2.1.1.2 Challenges: technical and economic goals still remain 39
2.2 Catalyst layers’ structure: a reason to reconstruct 39
2.2.1 Heterogeneous materials 40
xxi
xxii Table of contents
2.2.2 First steps for the reconstruction of catalyst layers 40
2.2.2.1 Structural features matter 41
2.2.2.2 Scaling – a matter of perspectives 42
2.2.3 Stochastic reconstruction – scaling method 43
2.2.3.1 Statistical signatures 44
2.2.4 Let’s reconstruct 45
2.2.4.1 Features of reconstructed structures 47
2.2.4.2 Effective ohmic conductivity 49
2.2.4.3 CL voltage distribution, electric and ionic transport
coefficients 50
2.2.5 Structural reconstruction: annealing route 53
2.2.5.1 Image processing for statistical realistic information 54
2.2.5.2 Structural reconstruction – annealing method 55
2.2.5.3 Statistical functions – two scales 57
2.2.5.4 Effective electric resistivity simulation from a reconstructed
structure 59
2.3 New material support and new catalyst approaches 60
2.3.1 Carbon nanotubes “decorated” with platinum 60
2.3.1.1 Substantial differences for CNT structures 60
2.3.1.2 CNT considerations when inputting component properties 63
2.3.2 Core-shell-based catalyzers 64
2.3.2.1 General considerations for reconstruction 64
2.4 Concluding remarks 64
3. Multi-scale model techniques for PEMFC catalyst layers 69
Yu Xiao, Jinliang Yuan & Ming Hou
3.1 Introduction 69
3.1.1 Physical and chemical processes at different length and time scales 69
3.1.2 Needs for multi-scale study in PEMFCs 69
3.2 Models and simulation methods at different scales 70
3.2.1 Atomistic scale models at the catalyst surface 70
3.2.1.1 Dissociation and adsorption processes on the Pt surface 71
3.2.1.2 Reaction thermodynamics 71
3.2.2 Modeling methods at nano-/micro-scales 72
3.2.2.1 Molecular dynamics modeling method 73
3.2.2.2 Monte Carlo methods 74
3.2.3 Models at meso-scales 74
3.2.3.1 Dissipative particle dynamics (DPD) 74
3.2.3.2 Lattice Boltzmann method (LBM) 75
3.2.3.3 Smoothed particle hydrodynamics (SPH) method 75
3.2.4 Simulation methods at macro-scales 76
3.3 Multi-scale model integration technique 76
3.3.1 Integration methods on atomistical scale to nano-scale 76
3.3.2 Microscopic CL structure simulation 79
3.3.3 Analyses of predicted CLs microscopic structures 79
3.3.3.1 Microscopic parameters evaluation 79
3.3.3.2 Primary pore structure analysis 81
3.3.4 Model validation 82
3.3.4.1 Pore size distribution 82
3.3.4.2 Pt particle size distribution 83
3.3.4.3 The average active Pt surface areas 84
3.3.5 Coupling electrochemical reactions in CLs 87
Table of contents xxiii
3.4 Challenges in multi-scale modeling for PEMFC CLs 88
3.4.1 The length scales 88
3.4.2 The time scales 88
3.4.3 The integration algorithms 88
3.5 Conclusions 89
4. Fabrication of electro-catalytic nano-particles and applications to proton
exchange membrane fuel cells 95
Maria Victoria Martínez Huerta & Gonzalo García
4.1 Introduction 95
4.2 Overview of the electro-catalytic reactions 96
4.2.1 Hydrogen oxidation reaction 96
4.2.2 H2/CO oxidation reaction 96
4.2.3 Methanol oxidation reaction 98
4.2.4 Oxygen reduction reaction 99
4.3 Novel nano-structures of platinum 100
4.3.1 State-of-the-art supported Pt catalysts 100
4.3.2 Surface structure of Pt catalysts 101
4.3.3 Synthesis and performance of Pt catalysts 101
4.4 Binary and ternary platinum-based catalysts 105
4.4.1 Electro-catalysts for CO and methanol oxidation reactions 105
4.4.2 Electro-catalysts for the oxygen reduction reaction 108
4.4.3 Synthetic methods of binary/ternary catalysts 109
4.5 New electro-catalyst supports 112
4.6 Conclusions 115
5. Ordered mesoporous carbon-supported nano-platinum catalysts: application in
direct methanol fuel cells 131
Parasuraman Selvam & Balaiah Kuppan
5.1 Introduction 131
5.2 Ordered mesoporous silicas 132
5.3 Ordered mesoporous carbons 135
5.3.1 Hard-template approach 137
5.3.2 Soft-template approach 139
5.4 Direct methanol fuel cell 140
5.5 Electrocatalysts for DMFC 144
5.5.1 Bulk platinum catalyst 144
5.5.2 Platinum alloy catalyst 145
5.5.3 Nano-platinum catalyst 145
5.5.4 Catalyst promoters 145
5.6 OMC-supported platinum catalyst 145
5.6.1 Pt/NCCR-41 147
5.6.2 Pt/CMK-3 150
5.7 Summary and conclusion 153
6. Modeling the coupled transport and reaction processes in a
micro-solid-oxide fuel cell 159
Meng Ni
6.1 Introduction 159
6.2 Model development 160
6.2.1 Computational fluid dynamic (CFD) model 161
6.2.2 Electrochemical model 163
6.2.3 Chemical model 164
xxiv Table of contents
6.3 Numerical methodologies 165
6.4 Results and discussion 167
6.4.1 Base case 167
6.4.2 Temperature effect 171
6.4.3 Operating potential effect 172
6.4.4 Effect of electrochemical oxidation rate of CO 176
6.5 Conclusions 176
7. Nano-structural effect on SOFC durability 181
YaoWang & Changrong Xia
7.1 Introduction 181
7.2 Aging mechanism of SOFC electrodes 181
7.2.1 Aging mechanism of the anodes 181
7.2.1.1 Grain coarsening 182
7.2.1.2 Redox cycling 185
7.2.1.3 Coking and sulfur poison 185
7.2.2 Aging mechanism of cathodes 186
7.3 Stability of nano-structured electrodes 188
7.3.1 Fabrication and electrochemical properties of nano-structured electrodes 188
7.3.2 Models about nano-structured effects on stability 188
7.3.2.1 Nano-size effects on isothermal grain growth 190
7.3.2.2 Nano-structured effects on durability against thermal cycle 190
7.4 Long-term performance of nano-structured electrodes 192
7.4.1 Anodes 192
7.4.1.1 Enhanced interfacial stabilities of nano-structured anodes 192
7.4.1.2 Durability of nano-structured anodes against redox cycle 195
7.4.1.3 Durability of nano-structured anodes against coking and
sulfur poisoning 196
7.4.2 Cathodes 199
7.4.2.1 LSM 199
7.4.2.2 LSC 200
7.4.2.3 LSCF 202
7.4.2.4 SSC 203
7.5 Summary 204
8. Micro- and nano-technologies for microbial fuel cells 211
Hao Ren & Junseok Chae
8.1 Introduction 211
8.2 Electricity generation fundamental 212
8.2.1 Electron transfer of exoelectrogens 212
8.2.2 Voltage generation 213
8.2.3 Parameter for MFC characterization 214
8.2.3.1 Open circuit voltage (EOCV) 214
8.2.3.2 Areal/volumetric current density (imax,areal, imax,volumetric) and
areal/volumetric power density (pmax,areal, pmax,volumetric) 214
8.2.3.3 Internal resistance (Ri) and areal resistivity (ri) 214
8.2.3.4 Efficiency – Coulombic efficiency (CE) and energy conversion
efficiency (EE) 215
8.2.3.4.1 Coulombic efficiency (CE) 215
8.2.3.4.2 Energy conversion efficiency (EE) 216
8.2.3.5 Biofilm morphology 216
8.3 Prior art of miniaturized MFCs 217
Table of contents xxv
8.4 Promises and future work of miniaturized MFCs 220
8.4.1 Promises 220
8.4.2 Future work 222
8.4.2.1 Further enhancing current and power density 222
8.4.2.2 Applying air-cathodes to replace potassium ferricyanide 223
8.4.2.3 Reducing the cost of MFCs 224
8.5 Conclusion 224
9. Microbial fuel cells: the microbes and materials 227
Keaton L. Lesnik & Hong Liu
9.1 Introduction 227
9.2 How microbial fuel cells work 227
9.3 Understanding exoelectrogens 228
9.3.1 Origins of microbe-electrode interactions 228
9.3.2 Extracellular electron transfer (EET) mechanisms 229
9.3.2.1 Redox shuttles/mediators 229
9.3.2.2 c-type cytochromes 230
9.3.2.3 Conductive pili 231
9.3.3 Interactions and implications 231
9.4 Anode materials and modifications 231
9.4.1 Carbon-based anode materials 232
9.4.2 Anode modifications 233
9.5 Cathode materials and catalysts 234
9.5.1 Cathode construction 234
9.5.2 Catalysts 235
9.5.3 Cathode modifications 235
9.5.4 Biocathodes 236
9.6 Membranes/separators 236
9.7 Summary 238
9.8 Outlook 238
10. Modeling and analysis of miniaturized packed-bed reactors
for mobile devices powered by fuel cells 245
Srinivas Palanki & Nicholas D. Sylvester
10.1 Introduction 245
10.2 Reactor and fuel cell modeling 245
10.2.1 Design equations of the reactor 245
10.2.2 Design equations for the fuel cell stack 246
10.3 Applications 247
10.3.1 Methanol-based system 247
10.3.2 Ammonia-based system 252
10.4 Conclusions 255
11. Photocatalytic fuel cells 257
Michael K.H. Leung, BinWang, Li Li &Yiyi She
11.1 Introduction 257
11.2 PFC concept 257
11.2.1 Fuel cell 257
11.2.2 Photocatalysis 257
11.2.3 Photocatalytic fuel cell 258
11.3 PFC architecture and mechanisms 258
11.3.1 Cell configurations 258
xxvi Table of contents
11.3.2 Bifunctional photoanode 258
11.3.2.1 Photocatalyst 258
11.3.2.2 Substrate materials 260
11.3.2.3 Catalyst deposition methods 261
11.3.3 Cathode 262
11.4 Electrochemical kinetics 263
11.4.1 Current-voltage characteristics 263
11.4.1.1 Ideal thermodynamically predicted voltage 265
11.4.1.2 Activation losses 265
11.4.1.3 Ohmic losses 266
11.4.1.4 Concentration losses 267
11.4.2 Efficiency of a photocatalytic fuel cell 269
11.4.2.1 Pseudo-photovoltaic efficiency 269
11.4.2.2 External quantum efficiency 269
11.4.2.3 Internal quantum efficiency 269
11.4.2.4 Current doubling effect 269
11.5 PFC applications 270
11.5.1 Wastewater problems 270
11.5.2 Practical micro-fluidic photocatalytic fuel cell (MPFC) applications 270
11.6 Conclusion 270
12. Transport phenomena and reactions in micro-fluidic aluminum-air fuel cells 275
HuizhiWang, Dennis Y.C. Leung, Kwong-Yu Chan, Jin Xuan & Hao Zhang
12.1 Introduction 275
12.2 Mathematical model 276
12.2.1 Problem description 276
12.2.2 Cell hydrodynamics 277
12.2.3 Charge conservation 278
12.2.4 Ionic species transport 279
12.2.5 Electrode kinetics 280
12.2.5.1 Anode kinetics 280
12.2.5.2 Cathode kinetics 280
12.2.5.3 Expression of overpotentials 282
12.2.6 Boundary conditions 282
12.3 Numerical procedures 282
12.4 Results and discussion 283
12.4.1 Model validation 283
12.4.2 Hydrogen distribution 284
12.4.3 Velocity distribution 287
12.4.4 Species distribution 287
12.4.4.1 Single-phase flow 287
12.4.4.1.1 Ionic species concentration distributions 287
12.4.4.1.2 Migration contribution to transverse species
transport 288
12.4.4.2 The effect of bubbles 289
12.4.5 Current density and potential distributions 290
12.5 Conclusions 293
专业书籍
下载地址:(回复后可见)
**** Hidden Message ***** 向科学技术进军 谢谢分享。 谢谢 好资料,谢谢楼主分享 楼主好人,一生平安 非常感谢 学习雷锋
页:
[1]