《Solid Oxide Fuel Cells:From Materials to System Modeling》
《Solid Oxide Fuel Cells:From Materials to System Modeling》固体氧化物燃料电池:从材料到系统建模
编辑:
Meng Ni
Hong Kong Polytechnic University, Hung Hom, Kowloon, P.R. China
Tim S. Zhao
The Hong Kong University of Science and Technology, Hong Kong, P.R. China
出版社:RSC
出版时间:2013年
目录
Chapter 1 Introduction to Stationary Fuel Cells 1
Ibrahim Dincer and C. Ozgur Colpan
1.1 General Introduction to Fuel Cells 1
1.2 Introduction to Low-Temperature Fuel Cells 2
1.3 Introduction to Solid Oxide Fuel Cells 4
1.3.1 Classification of SOFC Systems 5
1.3.2 Fuel Options for SOFC 7
1.4 Integrated SOFC Systems 9
1.5 Basic SOFC Modelling 12
1.6 Case Study 14
1.6.1 Analysis 14
1.6.2 Results and Discussion 20
1.7 Conclusions 22
References 24
Chapter 2 Electrolyte Materials for Solid Oxide Fuel Cells (SOFCs) 26
Yu Liu, Moses Tade and Zongping Shao
2.1 A General Introduction to Electrolyte of SOFCs 26
2.2 The Requirements of Electrolyte 27
2.3 Classification of Electrolytes 28
2.3.1 Oxygen-ion Conducting Electrolyte 28
2.3.2 Proton-conducting Electrolyte 37
2.3.3 Dual-phase Composite Electrolyte 45
2.4 Future Vision 46
References 47
RSC Energy and Environment Series No. 7
Solid Oxide Fuel Cells: From Materials to System Modeling
Edited by Meng Ni and Tim S. Zhao
r The Royal Society of Chemistry 2013
Published by the Royal Society of Chemistry, www.rsc.org
vii
Chapter 3 Cathode Material Development 56
Yao Wang, Yanxiang Zhang, Ling Zhao and Changrong Xia
3.1 Introduction 56
3.2 Cathodes for Oxygen Ion-Conducting Electrolyte
Based SOFCs 57
3.2.1 Electron Conducting Cathodes 57
3.2.2 Mixed Oxygen Ion-Electron Conducting
Cathodes 61
3.2.3 Microstructure Optimized Cathodes 65
3.2.4 Cathode Reaction Mechanisms 70
3.3 Cathodes for Proton-Conducting Electrolyte Based
SOFCs 73
3.3.1 Electron-Conducting Cathodes 73
3.3.2 Mixed Oxygen Ion-Electron Conducting
Cathodes 74
3.3.3 Mixed Electron-Proton Conducting Cathodes 77
3.3.4 Microstructure Optimized Cathodes 78
3.3.5 Cathode Reaction Mechanisms 80
3.4 Summary and Conclusions 82
Acknowledgements 82
References 83
Chapter 4 Anode Material Development 88
Shamiul Islam and Josephine M. Hill
4.1 Required Properties of Anode Materials 88
4.2 Hydrogen Fuel 89
4.3 Methane Fuel 90
4.3.1 Conventional Ni/YSZ Anodes 91
4.3.2 Alternative Anodes 92
4.4 Higher Hydrocarbon Fuels (Propane and Butane) 94
4.5 Fuels from Biomass 95
4.5.1 Biomass-Simulated Gas 96
4.5.2 Biomass – Actual Gas 97
4.6 Liquid Fuels 98
4.7 Ammonia Fuel 100
4.8 Conclusions 101
References 101
Chapter 5 Interconnect Materials for SOFC Stacks 106
Xingbo Liu, Junwei Wu and Christopher Johnson
5.1 Introduction 106
viii Contents
5.2 Lanthanum Chromites as Interconnect 107
5.2.1 Conductivity 108
5.2.2 Thermal Expansion 111
5.2.3 Gas Tightness, Processing and Chemical
Stability 113
5.2.4 Other Ceramic Interconnect 114
5.2.5 Applications 114
5.3 Metallic Alloys as Interconnect 116
5.3.1 Selection of Metallic Materials 116
5.3.2 Problems for Metallic Materials as
Interconnect 120
5.3.3 Interconnect Coatings 123
5.3.4 Applications of Metallic Interconnects 126
5.4 Concluding Remarks 130
References 130
Chapter 6 Nano-structured Electrodes of Solid Oxide Fuel Cells by
Infiltration 135
San Ping Jiang
6.1 Introduction 135
6.2 Infiltration Process 136
6.2.1 The Technique 136
6.2.2 Factors Affecting Infiltration Process and
Microstructure 140
6.3 Nano-structured Electrodes 142
6.3.1 Performance Promotion Factor 142
6.3.2 Nano-structured Cathodes 143
6.3.3 Nano-structured Anodes 150
6.4 Microstructure and Microstructural Stability of
Nano-structured Electrodes 155
6.4.1 Microstructure Effect 155
6.4.2 Microstructural Stability of Nano-structured
Electrodes 158
6.5 Electrocatalytic Effects of Infiltrated Nanoparticles 162
6.6 Conclusions 168
Acknowledgement 169
References 169
Chapter 7 Three Dimensional Reconstruction of Solid Oxide Fuel Cell
Electrodes 178
P. R. Shearing and N. P. Brandon
7.1 The Importance of 3D Characterisation and the
Limitations of Stereology 179
Contents ix
7.2 Focused Ion Beam Characterisation 184
7.2.1 The FIB-SEM Instrument 184
7.2.2 Application of FIB-SEM Techniques to SOFC
Materials 186
7.3 Microstructural Characterisation using X-rays 189
7.3.1 X-ray Microscopy and Tomography 189
7.3.2 Lab X-ray Instruments 191
7.3.3 Synchrotron X-ray Instruments 192
7.3.4 4-Dimensional Tomography 193
7.4 Data Analysis and Image Based Modelling 195
7.4.1 Data Analysis 195
7.4.2 Image Based Modelling 196
7.5 Conclusions 196
References 197
Chapter 8 Three-Dimensional Numerical Modelling of Ni-YSZ Anode 200
Naoki Shikazono and Nobuhide Kasagi
8.1 Introduction 200
8.2 Experimental 201
8.2.1 Button Cell Experiment 201
8.2.2 Microstructure Reconstruction Using
FIB-SEM 202
8.3 Numerical Method 202
8.3.1 Quantification of Microstructural Parameters 202
8.3.2 Governing Equations for Polarization
Simulation 207
8.3.3 Computational Scheme 211
8.4 Results and Discussions 212
8.5 Conclusions 215
Acknowledgements 216
References 216
Chapter 9 Multi-scale Modelling of Solid Oxide Fuel Cells 219
Wolfgang G. Bessler
9.1 Introduction and Motivation 219
9.2 Modelling Methodologies: From the Atomistic to the
System Scale 220
9.2.1 Overview 220
9.2.2 Molecular Level: Atomistic Modelling 220
9.2.3 Electrode Level (I): Electrochemistry with
Mean-field Elementary Kinetics 222
9.2.4 Electrode Level (II): Porous Mass and Charge
Transport 224
x Contents
9.2.5 Cell Level: Coupling of Electrochemistry with
Mass, Charge and Heat Transport 225
9.2.6 Stack Level: Computational Fluid Dynamics
Based Design 226
9.2.7 System Level 226
9.3 Bridging the Gap Between Scales 227
9.3.1 General Aspects 227
9.3.2 Electrochemistry 228
9.3.3 Transport 232
9.3.4 Structure 234
9.4 Multi-scale Models for SOFC System Simulation and
Control 237
9.4.1 Pressurized SOFC System for a Hybrid
Power Plant 237
9.4.2 Tubular SOFC System for Mobile APU
Applications 237
9.5 Conclusions 240
Acknowledgements 241
References 241
Chapter 10 Fuel Cells Running on Alternative Fuels 247
Xinwen Zhou, Ning Yan and Jing-Li Luo
10.1 Introduction 247
10.2 Fuel Cell Reactor Set-up 248
10.3 SOFCs Running on Sourgas 248
10.4 SOFCs Running on C2H6 and C3H8 256
10.4.1 Development of Electrolyte of PC-SOFCs 258
10.4.2 Development of Anode Materials of
PC-SOFCs 262
10.5 SOFCs Running on Syngas Containing H2S 269
10.6 SOFCs Running on Pure H2S 276
10.7 Summary 281
Acknowledgements 282
References 282
Chapter 11 Long Term Operating Stability 288
Haruo Kishimoto, Teruhisa Horita and Harumi Yokokawa
11.1 Introduction 288
11.2 Durability of Stacks/Systems 289
11.2.1 Determination of Stack Performance 289
11.2.2 Performance Degradation and Materials
Deteriorations 289
11.2.3 Impurities and their Poisoning Effects on
Electrode Reactivity 292
Contents xi
11.3 Deteriorations of Electrolytes 294
11.3.1 Destabilization of Mn Dissolved YSZ 296
11.3.2 Conductivity Decrease in Ni-dissolved YSZ 302
11.4 Performance Degradations of Cathode and Anodes 309
11.4.1 Cathode Poisoning 309
11.4.2 Sintering of Ni Cermet Anodes 316
11.5 For Future Work 320
11.6 Conclusions 321
Acknowledgement 321
References 321
Chapter 12 Application of SOFCs in Combined Heat, Cooling and
Power Systems 327
R. J. Braun and P. Kazempoor
12.1 Introduction 327
12.1.1 Drivers for Interest in Co- and
Tri-generation Using Fuel Cells 328
12.1.2 Overview of CHP and CCHP 329
12.2 Application Characteristics & Building Integration 331
12.2.1 Commercial Buildings 332
12.2.2 Residential Applications 334
12.2.3 Building Integration & Operating Strategies 335
12.3 Overview of SOFC-CHP/CCHP Systems 338
12.3.1 SOFC System Description for CHP
(Co-generation) 339
12.3.2 SOFC System Description for CCHP
(Tri-generation) 340
12.4 Modelling Approaches: Cell to System 342
12.4.1 System-level Modelling and Performance
Estimation 344
12.4.2 Cell/Stack Modelling for SOFC System
Simulation 349
12.4.3 System Optimization Using Techno-economic
Model Formulations 355
12.5 Evaluation of SOFC Systems in CCHP Applications 356
12.5.1 Micro-CHP 356
12.5.2 Large-scale CHP and CCHP Applications 363
12.6 Commercial Developments of SOFC-CHP Systems 365
12.6.1 Commercialization Efforts 366
12.6.2 Demonstrations 367
12.7 Market Barriers and Challenges 371
12.7.1 Energy Pricing 371
12.7.2 SOFC Costs 372
12.7.3 Technical Barriers 373
12.7.4 Market Barriers and Environmental Impact 373
xii Contents
12.8 Summary 376
References 376
Chapter 13 Integrated SOFC and Gas Turbine Systems 383
Francesco Calise and Massimo Dentice d’Accadia
13.1 Introduction 383
13.2 SOFC/GT Prototypes 385
13.3 SOFC/GT Layouts Classification 392
13.4 SOFC/GT Pressurized Cycles 394
13.4.1 Internally Reformed SOFC/GT Cycles 395
13.4.2 Anode Recirculation 396
13.4.3 Heat Recovery Steam Generator (HRSG) 402
13.4.4 Externally Reformed SOFC/GT Cycles 411
13.4.5 Hybrid SOFC/GT-Cheng Cycles 411
13.4.6 Hybrid SOFC/Humidified Air
Turbine (HAT) 414
13.4.7 Hybrid SOFC/GT-ITSOFC Cycles 415
13.4.8 Hybrid SOFC/GT-Rankine Cycles 417
13.4.9 Hybrid SOFC/GT with Air Recirculation or
Exhaust Gas Recirculation (EGR) 419
13.5 SOFC/GT Atmospheric Cycles 424
13.6 SOFC/GT Power Plant: Control Strategies 427
13.7 Hybrid SOFC/GT Systems Fed by Alternative Fuels 436
13.8 IGCC SOFC/GT Power Plants 447
References 452
Chapter 14 Modelling and Control of Solid Oxide Fuel Cell 463
Xin-jian Zhu, Hai-bo Huo, Xiao-juan Wu and Bo Huang
14.1 Static Identification Model 464
14.1.1 Nonlinear Modelling Based on LS-SVM 464
14.1.2 Nonlinear Modelling Based on GA-RBF 470
14.2 Dynamic Identification Modelling for SOFC 478
14.2.1 ANFIS Identification Modelling 479
14.2.2 Hammerstein Identification Modelling 487
14.3 Control Strategies of the SOFC 496
14.3.1 Constant Voltage Control 497
14.3.2 Constant Fuel Utilization Control 501
14.3.3 Simulation 502
14.4 Conclusions 505
References 506
Subject Index 511
专业书籍
下载地址:(回复后可见)
**** Hidden Message *****
向科学技术进军 谢谢分享。 谢谢 灰常好!灰常感谢! 谢谢雷锋分享,好料 想看看 楼主好人,一生平安 非常谢谢 学习雷锋
页:
[1]
2